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Abstract

In recent years, both the number and the size of image datasets have grown at
an uncontrollable rate. This creates a serious challenge for the analysis of image
databases, especially for researchers who may not have access to expensive and
powerful supercomputers. In this research report, we study an alternative to pixel-
based analysis: a functional representation of the shapes of objects within images.
This representation offers several advantages. By being of much lower dimension,
it greatly reduces the computational cost of subsequent analyses; it is also far more
interpretable and can leverage the extensive set of tools already developed for the
analysis of multivariate functional data. We investigate this shape-based approach
in the context of classification using a real dataset, the HAM10000 dataset, and our
results demonstrate a clear computational benefit with similar predictive power.

1 Introduction
Photos and images have been attracting an increasing amount of interest in the data
analysis literature as this type of data structure becomes more accessible. Images are
an important source of information in many fields, including transportation, where cities
can use cameras to identify dangerous intersections, and health sciences, where images
from various sources such as magnetic resonance imaging (MRI) or X-rays are used to
predict diseases. In this report, we focus on the latter field; more precisely, we discuss the
diagnosis of skin diseases using photographs of moles.

As cameras went digital, pixels became the atom of photos and images. This means
that the most common approach to store an image is as a matrix, where an element
(i, j) represents the color at pixel coordinates [i, j]. Unsurprisingly, most approaches
for image analysis directly use this pixel representation, and modern models inspired
by convolutional neural networks (CNNs; LeCun et al., 1989) have shown great prowess
in learning complex patterns within images. However, as data dimensions increase in
both quantity and resolution, these models can be computationally intensive to train.
Additionally, pixel-based approaches are often difficult to interpret and are vulnerable to
changes in resolution.
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Hence, in this paper, we study the benefits of using a different representation for im-
ages in the context of supervised learning on real data. Shape-based image representation
Moindjié, Beaulac, and Descary, 2025; Moindjié, Descary, and Beaulac, 2025 focuses on
the geometric features of objects of interest within images. By capturing the contours
of these objects and representing them using a Fourier basis expansion, we can dramati-
cally reduce the dimensionality of images, thereby lowering the computational burden of
the analysis. Moreover, this representation enhances interpretability by replacing pixel-
level information with shape-related inference. Finally, once projected onto the same
basis, images of different resolutions become directly comparable, effectively addressing
the generalization issues of CNNs across varying image resolutions.

In the following research report, we study a popular benchmark dataset for image anal-
ysis as we compare pixel-based and shape-based approaches. We discuss computational
cost and classification results.

In Section 2, we thoroughly introduce the dataset of interest as well as the prepro-
cessing steps required for the subsequent analysis. Section 3 describes the nonlinear
classification models designed for this comparison, as well as the tuning and hyperparam-
eter selection process. Finally, results are discussed in Section 4, before concluding in
Section 5.

2 Dataset
This paper focuses on HAM10000 dataset (Human Against Machine) (Tschandl et al.,
2018) for the numerical experiments. The HAM10000 dataset is a popular benchmark for
medical image analysis (Guan et al., 2024). Its popularity can be explained by its high
number of samples (10015), the diversity of skin lesions (7 types), and the quality of the
labels, obtained via expert consensus.

We focus on the two most represented classes over the seven skin lesions: benign and
melanoma. By restricting HAM10000 to these classes, the sample number decreases to
7826 images, in which 1115 are melanoma and 6711 are benign:

• As its name indicates, the first one (benign) represents non-pathological moles. They
appear in various cases and are generally symmetric.

• The second class (melanoma) represents a malignant mole, which is a type of skin
cancer. Contrary to benign moles, they do not generally have a specific form.

Since these moles are used for cancer diagnostic-making, a classification algorithm that
can distinguish these two classes is of great interest (see e.g. Das et al., 2021, Ali et
al., 2022, Mehr and Ameri, 2022). However, this algorithm must be trained in a highly
imbalanced class situation, as in real conditions, benign are overrepresented compared to
melanoma. In the learning part, this class’s imbalanced situation is considered by using
a weighted loss (see Section 3.3, for details).

2.1 Preprocessing
Contrary to pixel-based methods, which can consider color variations, shape-based meth-
ods can only account for objects’ forms in the image. Hence, to fairly compare these two
approaches, we focus on the silhouette of the moles as explanatory variables.
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Then, the inputs of the two approaches are derived from the segmented images, which
encode the silhouette of the mole (see Figure 1). This section presents the operations
aimed at obtaining the segmented images from the original ones.

(a) (b)

Figure 1: From the colored image (a) to the segmented image (b).

Since HAM10000 is a multi-source dataset, we have to define pre-processing steps that
are robust to the diversity of the images, relative to their initial publication. In addition
to the diversity of the sources, there are also intrinsic challenges that are obstacles to
decent segmentation of moles. Figure 2 presents some of them.

(a) (b) (c)

Figure 2: Challenges to the segmentation: (a): Circular frame from the lens used for the
dermoscopy, (b): Presence of hairs, and (c): Variability in the tints of the moles

The Circular frame problem (Figure 2 a) is addressed using the elliptic region of inter-
est (ROI) methodology, and, to address the remaining challenges, we propose a procedure
relying on the following steps: hair removal and channel choice for segmentation. The next
sections briefly present them. For additional details, we also provide their implementation
on our open-access GitHub repository1.

2.1.1 Hair removal

In Figure 2 (b), the presence of hairs is presented as a major nuisance. This, because hairs
can mimic the edges of the lesion, leading to poor border detection of the mole’s contour.
To remove hairs from images, we use the methodology proposed in Gencer, 2025, which
relies on the top hat mathematical morphological operation and an in-painting method.
Briefly, the top hat transform is used to extract the hairs in the image, which are then
removed. Then, in-painting extrapolates the value of missing pixels.

1https://github.com/Advla/Internship_Shape-based_pixel-based_DeepL_
approach-to-mole-classification
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Specifically, four main steps compose the hair removal pipeline (see Figure 3): (1)
apply a top-hat transform on the red channel of the image, (2) apply a Gaussian blur to
the resulting image, (3) apply the Otsu thresholding method (Otsu, 1979) to detect and
remove hairs,(4) use internal in-painting to fill the resulting gaps (Telea, 2004).

Figure 3 presents the pipeline on a HAM10000 image. Moreover, it is worth noting
that this method has a low computational cost as it relies on basic and computationally
efficient operations.

(a) (b)
(1) (2)

(3) (4)

Figure 3: Illustration of the four hair removal steps (Gencer, 2025) on the original image
(a): the resulting image is (b).

2.1.2 Channel choice for segmentation

Segmentation aims to obtain a binarized image (or mask) where a pixel is set to one if
it belongs to the mole and zero otherwise (see Figure 1). A classic approach is to define
a threshold α or automatically determine one (Otsu, 1979): if a pixel’s gray-scale value
exceeds α, we replace it with 1, and if not, we replace it with 0.

As seen in Figure 2 (c), the data exhibits a unique variability of tints and consequently
using a known linear combinations of the Red, Green, and Blue (RGB) channels to create
a gray-scale representation could be suboptimal. As an alternative, we propose a method
that learns the coefficient of the linear combination of RGB channels to create a unique
gray-scale representation specific to this problem. We use Principal Component Analysis
(PCA) on the RGB channels, and we choose the first principal component such that
this new channel captures the maximum variance for each image. Figure 4 presents an
illustration of the segmentation pipeline.
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(1) (2) (3) (4)

Figure 4: Segmentation pipeline: (1) image after the hair removal step, (2) the "PCA"
channel with min-max normalization, (3) segmented images using Otsu’s threshold, (4)
segmented images after artifacts cleaning.

It also shows that some additional operations are needed to clean the mask of remain-
ing artifacts (from step (3) to (4)), such as area calculus and additional morphological
mathematical operations. For the sake of conciseness, these remaining details are provided
on our open-access GitHub repository 2.

2.2 Contour extraction
The input of the pixel-based methods is the mask obtained in the previous step. For
shape-based methods, they take as input the contour of the main object in the image,
which also necessitates the use of masks; the marching Squares algorithm (Maple, 2003)
is performed on the masks to obtain the contour. The next sections provide more details
on the models used for comparing the two paradigms.

3 Models
This part presents the chosen methods for evaluating the ability of each framework (pixel
and shape) to classify the moles. Deep-learning methods are used as they demonstrate
remarkable progress in image classification tasks.

• For the pixel-based paradigm, we use a convolutional neural network method (CNN).
It learns features automatically from the image, using a kernel optimization of a
feedforward neural network (LeCun et al., 1989).

• For the shape-based paradigm, we use a multilayer perception method (MLP): a
feedforward neural network of fully connected neurons with nonlinear activation
functions (see Popescu et al., 2009 for details).

To ensure a fair comparison with the shape-based MLP, we designed the CNN with
a complexity order comparable to the MLP. The goal is to assess the quality of the
information contained in the pixel representation versus the shape representation, without
the bias introduced by massive, pre-trained deep learning architectures.

2https://github.com/Advla/Internship_Shape-based_pixel-based_DeepL_
approach-to-mole-classification
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3.1 Pixel-based: CNN for classification
The convolutional neural network automatically extracts features from the pixel repre-
sentation of images, where the features aim to be meaningful descriptors for classification.
Then, the inputs of the CNN are the full-size segmentation masks produced by the pre-
vious steps. Figure 5 presents the global procedure.

Figure 5: Complete data analysis pipeline, including preprocessing, for the pixel-based
approach.

3.2 Shape-based: MLP for classification
In the shape-based paradigm, we use Fourier coefficients to approximate the contour’s
shapes. To remove translation, rotation, and re-parametrization deformations from the
detected contours, the work of Moindjié, Beaulac, and Descary, 2025 is performed as a
preprocessing step. The obtained coefficients are descriptors of the shape of the contours.
These coefficients are the shape features in MLPs. The deformation estimates, such as
translation and rotations are also added to the MLP model as features. Figure 6 illustrates
the global MLP pipeline, and Appendix A provides details on the input formats.

3.3 Selected spaces of hyperparameters
For each method, we perform qualitative tests followed by a Bayesian Search (with 100
iterations), to define appropriate hyperparameter spaces for each architecture (CNN and
MLP). These preliminary results help us select the hyperparameter space, where the main
characteristics are the following:

• L2- Regularization: 10−4–10−2 (log scale)

• Dropout rates: 0.1–0.4 (log-scale)

• Learning rates: 5 × 10−4–2 × 10−3 (log scale)
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Figure 6: Complete data analysis pipeline, including preprocessing, for the shape-based
approach.

• Depth:
MLP Dense depth: 1–3 layers with units {16, 32, 64, 128}

CNN Dense depth: 1–3 layers with units {32, 64, 128}
Convolutional depth: 2–4 layers with filter sizes {16, 32, 64}, kernel size = (3, 3)

In both models (MLP and CNN), we use ReLU activations, He-normal initialization,
and batch normalizations. The estimation of the models is performed by Adam (Kingma
and Ba, 2014) on a weighted binary cross-entropy loss and a batch size of 32, using Area
Under the Curve (AUC) as the evaluation metric.

The training was conducted on Google Colab using an NVIDIA A100 GPU with 80
GB of VRAM. The complete process, including both training and evaluation, required a
total runtime of 17 hours and 19 minutes.

The MLP architecture had a modest memory footprint of 0.7 GB, whereas the CNN
consumed as much as 66.7 GB of VRAM, despite both models being trained with a batch
size of 32. Full-resolution images were used for the experiments (450 × 600).
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3.4 Tuning procedure and evaluation metrics
We evaluated our feature extractors using a nested stratified cross-validation with m = 20
outer folds (See Figure 7). The principle is quite simple, we devided the data set into
a training set and a test set m = 20 different times and each time we performed cross-
validation on the trainings set to tune the model. For each of the m = 20 outer test fold,
the remaining folds were used for hyperparameter tuning via an inner cross-validation
with l = 10 randomly sampled configurations from a reduced search space.

Figure 7: Nested Cross-Validation Chart.

The best model according to the inner cross-validation was then retrained on the
entire training set and evaluated on the held-out test set. The resulting test metrics
across m = 20 folds are presented in the next section.

4 Results
Table 1 presents a summary of the obtained results, and Figure 8 shows the resulting
AUCs. We also present the result of the naive model, which predicts the majority class
(benign) for all instances. If a model achieves a lesser performance than the naive one,
then it is less efficient than a random classification procedure. As these are standard
metrics, we left their definition to the appendix.

The obtained results show that MLP and CNN are both more efficient than the naive
model. They also show that the pixel-based method (CNN) achieves, on average, a
slightly higher performance than MLP in terms of AUC. However, compared to MLP,
CNN has a much higher AUC standard deviation, which makes it less stable in terms
of prediction quality. Moreover, in terms of computational cost, MLPs are much more
competitive than CNNs, as they have nearly 5.5 times less training time (including
data standardization) than CNNs, while using almost 95 times less VRAM (0.7GB
for MLPs vs. 66.7GB for CNNs).

4.1 Statistical significance of the results
Since the results are quite close for the two models, we perform some tests to assess
the statistical significance of the performance gaps. Specifically, we construct confidence
intervals for the difference metrics (AUC, Balanced Accuracy, F1) across all folds using
bootstrapping (Efron, 1982).
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Model AUC Bal.Acc. F1 Train time (s) VRAM (GB)
MLP 0.640 ± 0.031 0.572 ± 0.036 0.837 ± 0.020 31.7 ± 6.92 0.7
CNN 0.697 ± 0.069 0.544 ± 0.049 0.814 ± 0.016 174 ± 82.9 66.7
Naive 0.5 0.5 0.791 0 0

Table 1: Stratified-Nested-CV results overview: m ± σ, with m denotes the mean and σ
the standard deviation

(a) ROC Curves per fold - MLP (b) ROC Curves per fold - CNN

Figure 8: Comparison of ROC curves per fold for MLP and CNN architectures.

For estimating the empirical distributions of the difference vectors, we bootstrap them
10000 times, which allows us to determine the 2.5% and 97.5% quantiles of each metric.
Differences for which the interval did not include 0 were considered statistically significant,
whereas intervals containing 0 indicated no significant difference. Table 2 presents the
results for each metric.

Metric 95% CI (Bootstrap) Decision
AUC (−0.092, −0.017) Significant(∗)

Balanced Accuracy (−0.003, +0.057) Not significant
F1 Score (−0.003, +0.057) Not significant

Table 2: Statistical comparison of MLP vs CNN using 95% bootstrap confidence intervals.
(∗): CNN performs significantly better than MLP.

The obtained results show that the observed difference in terms of AUC is significant,
with CNN outperforming the MLP. For the remaining metrics (Balanced Accuracy and
F1 Score), the confidence intervals include zero, meaning that there is no evidence of a
significant performance difference between the two models for these metrics.

5 Conclusion
We presented a numerical comparison of discrete and continuous representations of im-
ages in a supervised classification context. While the discrete paradigm based on pixel
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representations of the image data has been largely studied (LeCun et al., 1989), the pre-
sented continuous representation is a novel methodology (Moindjié, Beaulac, and Descary,
2025); it relies on statistical shape analysis (Dryden and Mardia, 2016) and functional
data analysis (Ramsay and Silverman, 2005) to account for the continuous nature of the
main object in the images. This work aimed to compare these two approaches in a real
data application context.

To do so, we used the HAM10000 datasets (Tschandl et al., 2018): a popular med-
ical image dataset of diverse skin lesions. Specifically, the focus was on the two most
represented classes: benign (non-pathological) and melanoma (pathological) moles. Us-
ing neural network algorithms for classification, CNN for pixels and MLP for continuous
shapes, our study demonstrated that the continuous approach gives overall competitive
results compared to pixel-based methodologies, while needing fewer computational re-
sources; the computational time was divided by 5, and the memory footprint ratio was
of about 95: MLP needed 0.7 GB and CNN 66.7 GB for the training. The parsimonious
representation of continuous-based methods explains these findings: it needs a negligible
number of Fourier coefficients (202) compared to the number of pixels (450 × 600).

In this report, we focused on the silhouette of the moles and, therefore, the influence of
color variations was ignored. Our motivation was to provide a fair comparison between the
two approaches, since the continuous approach exclusively relies on the object’s silhouette
in the images. Future works will investigate the integration of the colors in the shape-
based approach, as colors in images may be strongly informative in the classification
task (see e.g., Gowda and Yuan, 2018, Funt and Zhu, 2018). This will enable additional
numerical experiments to study the limitations and the benefits of the two paradigms on
various supervised and unsupervised problems.
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A The shape inputs in MLP
With the border extracted, we rely on the work of Moindjié, Beaulac, and Descary, 2025
to extract the following information of the contours:

• ρ ∈ R+: scaling factor

• T ∈ R2: translation vector

• θ ∈ [0, 2π]: rotation angle

• δ ∈ [0, 1]: starting point of the parametrization function.

In their approach, they consider the contours as a planar curve X : [0, 1] → R2 which
relates a latent shape X̃ by

X(t) = ρOθ X̃ ◦ γδ(t) + T t ∈ [0, 1]

where t ∈ [0, 1], Oθ is the rotation matrix of angle θ and γδ(t) = mod(t− δ, 1), where mod
is the modulo function.

For obtaining parameters θ and δ, a template µ is used. The estimation of these
parameters relies on the following optimization problem:

(θ̂, δ̂) = arg min
θ,δ

∥X −Oθµ∥2
f

where ∥ · ∥f is an adequate functional norm.

A.0.1 Fourier Representation and Numerical Optimization

To make the minimization tractable, both X∗ and µ are projected on a truncated Fourier
basis of dimension M :

X∗(t) =
M∑

k=1
αkψk(t), µ(t) =

M∑
k=1

ukψk(t) αk, uk ∈ R2

The coefficients are arranged into matrices α, u ∈ RM×2.
The reparametrization γδ acts through a block-diagonal orthogonal matrix β(δ), while
the rotation Oθ acts globally. The alignment criterion becomes

(θ̂, δ̂) = arg min
θ,δ

∥α−Oθuβ(δ)∥2
F

where ∥ · ∥F is the matrix Frobenius norm:

∥A∥2
F =

∑
i,j

A2
ij
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Algorithm

1. Grid search over δ ∈ [0, 1] (e.g. step size 0.01).

2. For each δ, solve for the optimal rotation θ̂δ.

3. Select (θ̂, δ̂) minimizing the Frobenius error.

A.0.2 Pipeline used and Features retained

The contours extracted from the images are not the shape variables themselves, as they are
latent variables that we need to estimate. For doing so, we apply the approach proposed
in Moindjié, Beaulac, and Descary, 2025. It aims to align every contour on an arbitrary
reference: a mole with a well-defined boundary.

Figure 9: Reference we aligned other contours on - ISIC_0024803

For this purpose, we need to set a number M of Fourier functions for the functional
approximation of the two coordinates of the contour (see Appendix A for details). Here,
it is set to M = 101 Fourier functions, where the first one is a constant function.

The features in the MLP are the following :
• 2M = 202 aligned Fourier coefficients (float):, which are the 101 coefficients for
x−coordinate of the contours and 101 coefficients of y−coordinate of the contours.

• ρ (float) scaling factor: which are the norm of centred contour.

• θ (float): rotation angle (in radians) estimated to align the contour with the refer-
ence.

• δ (float): the reparametrization coefficient, which defines the aligned starting point
of the contour with the reference.

• minθ,δ ∥α−Oθuβ(δ)∥2
F (float): which is the Frobenius distance between the aligned

contour and the reference.
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B Performance metrics
Let us briefly defined the metrics used in Section 4. Given the following notation:

• True positive := TP,

• True negative := TN,

• False positive := FP,

• False negative := FN,

• True Positive Rate (Recall) := TPR = TP
TP+FN ,

• True Negative Rate (Specificity) := TNR = TN
FP+TN ,

• False Positive Rate := FPR = FP
FP+TN ,

we define the following metrics:

• Area Under Curve (AUC) :=
∫ 1

0 TPR(FPR)d(FPR), computed using the trape-
zoidal rule (following Keras implementation ; Keras Team, 2025),

• Balanced accuracy := 1
2

(
TP

TP+FN + TN
TN+FP

)
,

• F1 := 2TP
2TP+FP+FN .
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