Chapter 5

Variational Autoencoders: theory

and implementations

In this short chapter, we discuss the differences between the theoretical model and common implemen-
tations of VAEs. Those differences are there for a reason; they fix some problems that appear when
implementing a VAE in its simplest form. First, we define the simple VAE and we provide a visualization
of the problems this model suffers from. Second, we demonstrate empirically that common implemen-
tations manage to circumvent these problems. Third, we argue why these modifications empirically
benefit the simple VAE based on the literature. Fourth, we demonstrate how these implementations
do not respect the theory and why this is a problem. Finally, we propose potential solutions to those
issues which would lead to an updated theory along with concordant implementations. However, those
solutions have not been tested yet; we are demonstrating the existence of this gap between the theory
and implementations to begin. In other words, only the first three steps of this project are completed

at the moment of writing the thesis.

This chapter is not based on a published or submitted research paper yet; it is based on work that
has begun a few years back and that is still ongoing. We are currently working on adapting the content
of this chapter into publishable work. This chapter contains background information and observations

we will refer to in the chapters that follow.

5.1 The simple variational autoencoder

In this section we define what we refer as the simple VAFE in this chapter. It is actually the VAE model
introduced as an example in section 2.2.3. We use this model to illustrate the difference between what

was theoretically proposed and the common implementations.

The model is composed of a set of observed variables, which are identified as x and a set of unobserved
latent variables, identified as z. We assume p(z) to be N (0, I) and that x|z ~ N(p,,0,). We also suppose

that the dimension of z is d which is much lower than the dimension of x, m.

Furthermore, in this model the parameters of the observed distribution ((x.,0,)) are continuous

functions of the latent variable z; 0 = [p, 0.] = fz(2), to use a short notation, we identify p,(z) as the

o7
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function that takes z as input and return the parameters u, associated with this value and same for
0,(2) or simply 6(z) : R? — R™ x R7".

To ensure that this link function is as flexible as possible, a NN is used; 6(z) is a NN. It allows for
a maximum amount of flexibility but in turn makes the posterior of the latent py(z|z) intractable and
consequently the EM algorithm cannot be used. The proposed solution is to approximate py(z|z) with

¢, (z|z) a distribution of our choice.

For this simple variational autoencoder we will use a normal distribution: z|z ~ N(u,,02). Here
again the parameters p1, and o, are function of x: ¢ = [, 0.] = f.(z) or p(z) : R™ — R? x R%. This

function is once again a NN.

The simple VAE model is graphically represented as follows :

Figure 5.1: A graphical representation of the VAE architecture.

In Figure 5.1 the upward arrow represents the generative model (p) and the downward arrow repre-
sents the discriminative model (¢) or inference network. Though not very useful now, it is practical for

more complex model to separate both networks:

(a) The generative model assumes po(x,z) = (b) The inference model. Given observations = we can
po(z)po(x|z). infer the latent variable using g, (z|z).

5.1.1 Maximization of the ELBO

As previously mentioned in chapter 2, because it is impossible to compute the posterior distribution of
the latent py(z|x) we cannot compute E, (|, [In pg(z,x)] and thus EM is not a viable solution here. The

proposed solution is variational inference: we replace pg(z|z) with an approximate distribution g, (z|z)
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and attempt to maximize the ELBO
L(,0) = Eq, (zla) I po(2) + Inpy(x|2) — Ingy(z]z)] .
The common strategy is to run a gradient-based optimizer on a Monte Carlo sample of the ELBO
Inpe(z) + Inpe(x|2) — Ing,(z|lz) 2z~ q,(z|x),

where we draw a new Monte Carlo sample at every steps of the optimization. To discuss further the

current successful implementations, let us reorganize the terms in the ELBO

L(p,0) = o) Inpo(2) + Inpp(x|2) — In gy, (z|2)]
(zl2) 0 po(x|2) — (In gy (z|2) — Inpy(2))]
o) I po(x]2)] = B, (212) [In gy (2]x) — In py(z)] (5.1)
= E%(zlm) [In po(x[2)] = KL (g, (z]2) pe(2))-
Reconstruction error Regularization term

It is common to perceive the ELBO with respect to those two terms. We can see this as a regularized
optimization problem where we want to maximize the first term, the observed-data likelihood, and where
the second term works as penalization that discourages ¢, (z|z) from drifting far away from a N(0,I)

which represents the effect of the prior with a Bayesian flavour.

5.1.2 Practical uses
Dimensionality reduction and representation learning

A VAE is an unsupervised learning model like k-means clustering, GMM or Principal Component Analy-
sis (PCA). Just like these other techniques, VAE can be used for dimensionality reduction. If the code z
is a of much lower dimension, given the fitted encoding function ¢ and decoding function 8 we can easily
encode large observations x into the parameters of their lower-dimension representation z and also de-
code this representation to get the parameters of the reconstructed observation distribution. In contrast
to k-means or PCA, VAE offers a probabilistic dimensionality reduction rather than a deterministic one
which is similar to what GMM or pPCA offers in that aspect.

Dimensionality reduction is very useful for storage purposes or message transmission. A VAE can be
directly used for lossy compression where z is the compressed representation . VAEs can also be used
as building blocks in more complex compression schemes, for instance Townsend et al. [145] constructed
a lossless compression algorithm (BB-ANS) using VAEs. Besides, it is also quite common to apply

supervised learning techniques to the latent representation itself, as discussed later.

Manifold learning is often a synonym of non-linear dimensionality reduction and in the context
of machine learning is often viewed as a feature extraction step. Furthermore, the lower-dimension
representation itself can be analysed sometimes [86, 114, 121, 83] to visualize the compression process.
Since compression functions are continuous, it also allows us to better understand distances in the

high-dimensional space X.
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Generator

A VAE is a generative model [83]. Indeed, since a prior distribution is assumed for the latent variable, z ~
N(0,I) we have a fully defined joint distribution py(x,z) and it is possible to generate new observations
using ancestral sampling. Ancestral sampling [15] is the generative procedure for graphical models.
The graphical representation of VAEs, a Bayesian network [88], represents a set of factorization and
conditional independence assumptions which induces a natural sequence of events. In the simple VAE
case the assumed factorization is :p(z,z) = p(z)p(z|z). This leads to the following ancestral sampling

procedure:

H Algorithm 6: Ancestral Sampling with the simple VAE H

INPUT: n desired size of the generated sample

1) Sample z from N(0,I).

2) Process z through the NNs 6 to get u,(z) and o,(z2).
3) Sample x from N (pz(2), 04(2)).

4) Return

OUTPUT: a sample x of size n

Doing so allows us to generate new data points z according to its assumed distribution.

Semi-Supervised learning

VAEs can also be solutions to semi-supervised problems as was proposed by Kingma [85, 83] shortly
after the release of the introductory paper [86]. Various semi-supervised VAE models have been proposed
[85, 120, 107, 155]; and Rastgoufard [121] offers a thorough analysis of these models applied to various
semi-supervised tasks. Semi-supervision aims at learning the supervised relation between the observations
x and the labels y given a data set where multiple observations are not labelled. In other words,
given a standard labelled data set can we improve the classifier by incorporating additional unlabelled
observations 7 It is quite an important problem since expert labelling is far more costly than the process

of collecting raw data [121].

Observations from different classes are likely to cluster in different regions of the latent representa-
tion. In other words, observations = attached to different labels y will probably have different latent
representation z. We can use the labelled observation to find an appropriate prediction function h that
takes z as input and return a predicted label y. The strategy behind semi-supervised learning is to
leverage the large amount of unlabelled point to improve the encoding function g, (z|x) thus improving

the classification mechanism.

In fact, the encoder ¢ can be perceived as the feature-extraction step [153, 1, 122]; z ~ ¢(z|z) is the
vector of features extracted from the image = and it is easier to classify observations using those features
than when using the original observations x. The classifier h is trained on the features z using labelled
data set S; = {(x;,y:)|¢ € 1..n;} but we can use the additional unlabelled data S, = {z;|j € 1...n,} to

improve the feature extractor gq.
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5.2 Visualization of the simple VAE

In this section we demonstrate problems when implementing the simple VAE directly. The VAE and
it’s associated generative procedures are implemented in Python and we will use the well-known MNIST
data set [95] to visualize some of these problems. In hand-written document analysis, the MNIST data
set introduced by LeCun & al. [95] quickly became a benchmark for hand-written digits recognition and
is now a rite of passage for computer vision algorithms. It contains more than 60,000 images in shades

of grey of hand-written digits of size 28 by 28 pixels.

The following images and plots are visual supports for our arguments about the simple VAE prob-
lems. We produce plots and images that illustrates how VAE performs in tasks mentioned before;
compression and generation. Semi-supervised applications are left out for now, but VAEs limitations in
semi-supervision problems has been extensively studied in Rastgoufard’s thesis [121]. For compression
we look at the latent space and its associated reconstruction . (z), possible if d = 2, as well as an

example of reconstruction to observe the [oss incurred by the compression and decompression process.
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(a) Observations x projected onto its latent representa-
tion using z ~ N(u.(x),0.(x)).

Figure 5.3: Latent space visualization of a simple VAE with latent space of dimension d = 2
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Figure 5.4: Images = on the top row and its reconstruction p;(g,(x)) on the bottom row produce from
a simple VAE with latent space of dimension d = 2

Figure 5.5: Images « on the top row and its reconstruction p,(g,(z)) on the bottom row produce from
a simple VAE with latent space of dimension d = 20
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Figures 5.4 and 5.5 contain images and their associated reconstruction. We see multiple imperfections,
blurry images and sometimes the reconstructed digit is a completely different digit. Of course, we do
expect to lose some details when reducing the dimension from 784 to 20, but we know NNs allows for
function complex enough and we hope to achieve better results than what is obtainable with PCA which

compresses the data with linear combination.

3133133

Figure 5.6: Examples of reconstruction produced by PCA included in Bishop’s book [15]. The image
to the left is a real image and other images are reconstruction with latent space of size d = 1, d = 10,
d = 50 and d = 250 respectively.

PCA uses simple linear combination for compression and decompression. However, it achieves re-
construction of similar quality with a latent space of size d = 10 (third image of Figure 5.6) than the

simple VAE with a latent space of size d = 20 who relies on NN as for compression and decompression.

This is a disappointment.

For generation, we use ancestral sampling to produce a sample of 64 images:
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Figure 5.7: Sample obtained from the ancestral sampling described in the previous section.

Now we observe another major problem; the images generated are blurry, contains multiple imper-
fection and lack diversity. A human eye would judge harshly those images; they do not look like realistic

hand-written digits. As it stands, with an exact implementation of the simple VAE, the compression
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and reconstruction abilities of such models are equivalent to PCA and the generated images are not
impressive. None of these problems are mentioned in the papers that originally presented this model

[86, 73]. For instance, here are the samples available in Kingma’s thesis [83] :
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(a) 2-D latent space (b) 5-D latent space (c) 10-D latent (d) 20-D latent
space space

Figure 5.8: Snapshot of the result section of Kingma’s thesis.

It is unlikely that neither of the first authors did not encounter any of these problems. By avoiding
this discussion, it falls on the users to figure out how to implement the needed modifications and this

prevents the model to be used reliably on real-data problems as is.

5.3 Algorithmic solutions

As we observed in the previous section, a direct implementation of the simple VAE proposed in the
literature suffers from problems for both reconstruction and image generation. The figures of section 5.2
reveal some problems of the simple VAE. However figures much more flattering were published in articles
discussed above. To produce those images, some important modifications were done by researchers under
the hood of the proposed VAE of section 2.2.3, we will discuss those modifications in their respective

subsection.

In this section we explore successful implementations of VAEs and we highlight the differences be-
tween the simple VAE proposed and the common implementations. We discuss these differences and
their impact on the resulting model; how they fix some problem but drastically steer the model away
from its original proposed form. We named this section algorithmic solution since the explored modifi-
cation are algorithmic rather than theoretical. Our main objective in this chapter is to raise awareness

and motivate further research in this area.

5.3.1 Tradeoff between reconstruction and regularization

Remember that

‘C((p?9> = qu,(z\z) [lnpe(z) + 1npo(m|z) —1In qw(z|x)]
=Eq, (s1z) Inpo(2[2)] — KL (g4(z[x)|pe(2)). (5.2)

Reconstruction error Regularization term
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Figure 5.9: Images = on the top row and its reconstruction p,(g,(x)) on the bottom row produced with
a A-VAE with latent space of dimension d = 20

In multiple implementations we observed a wide range of modifications to the objective function where
both the reconstruction error and the regularization term are considered separately. To begin we will

address the balance, or lack thereof, between the two components of the ELBO.

When perceiving the ELBO as a regularized optimization problem as defined in section 5.1.1, the
need for an hyper-parameter controlling the strength of the regularization might seem beneficial. It is
now common to add a hyper-parameter, say [ in the objective function to allow us to control the balance

between the reconstruction error and the regularization

Eq, (zlo) Inpo(2|2)] = BKL (gp(2|2)|po(2)) - (5.4)

Models optimized with the objective function of Equation 5.4 are known as 8-VAEs [63, 24] and they were
developed to improve the disentanglement of the latent representation. In fact, their ability to form a
disentangled representation has been well studied [63, 24]. However, there is little discussion on the effect
of this hyper-parameter on the generative abilities of 5-VAEs and how to select the hyper-parameter 3
appropriately.

The authors indicate that a large [ is putting a stronger constraint on the latent bottleneck than in the
original VAE formulation which... should encourage the model to learn the most efficient representation
of the data. They also claim that the regularizing term in the objective function encourages conditional
independence in g,. However this is done to the detriment of the reconstruction term and to the

detriment of variability in generated samples.

Simply put, Equation 5.4 directly implies that small g leads to a more accurate reconstruction and
large 8 to more regularization. In other words, small 3 enables the algorithm to compress the data to a
lower-dimensional space and reconstruct an almost perfect image:

In Figure 5.9 we observe much better reconstruction that previously in Figure 5.5.

5.3.2 Reconstruction term

Secondly, let us discuss the implementation of the reconstruction term. If we assume that x|z ~ N then

_ 1 —(z — p(2))?
Inpg(z|z) =In ( FoEp exp < 20(2)? ))

(z — p(2))”
20(2)2

1
= -5 (2mo(2)?) — (5.5)

Common implementations do not maximize the reconstruction term of Equation 5.5. Instead the NN

0 returns an output of the same size as  and minimize the mean squared error (MSE) between = and
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the reconstructed £ = p(z). The motivation is that minimizing the MSE is equivalent to maximizing

the log-likelihood for a normal distribution with a fixed o, =1 (1)

(x — pu(2))?
2

2

—% In (27) — x —(x — p(z))”.

Based on empirical result fixing o(z) produces better reconstructed images:

3

Figure 5.10: Images = on the top row and its reconstruction f,(g,(x)) on the bottom row produce from
a simple VAE with latent space of dimension d =2 and ¢ =1
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Figure 5.11: Images « on the top row and its reconstruction fi,(g,(z)) on the bottom row produce from
a simple VAE with latent space of dimension d = 20 and o =1

In Figures5.10 and 5.11 we have noticeably better reconstruction than in Figures 5.4 and 5.5.

5.3.3 Modification to the ancestral sampling procedure

Finally, let us introduce a modification done to the data generation technique. We previously discussed
how VAEs were presented as generative models and that the graphical representation suggested the

Ancestral Sampling technique detailed in Algorithm 6.

However, all the implementations found online, including Kingma’s implementation [85], do not rely
on ancestral sampling. Actually, none of the implementation we found sample images from p(z|z),

instead x is deterministic given z, which is why we coined this technique deterministic sampling.

H Algorithm 7: Deterministic Sampling H

INPUT: n desired size of the generated sample

1) Sample z from N(0,I).

2) Process z through the NNs 6 to get u,(z) and o,(z2).
3) Return pi,(2)

OUTPUT: a sample of means (p,;) of size n

The only difference between the samples of Figures 5.7 and Figures 5.12 is the sampling technique.
In other words, we have trained a simple VAE, as introduced in section 5.1, but instead of generating x

from py(x|2), we simply returned p,(z). The difference in the quality is noticeable on eyesight.
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Figure 5.12: Sample obtained from p,(z) where z ~ N(0, I).
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Figure 5.13: Images « on the top row and its reconstruction j,(gy(x)) on the bottom row produced
from a simple VAE with latent space of dimension d = 2 and ¢ = 0.0001
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Figure 5.14: Images x on the top row and its reconstruction p,(g,(x)) on the bottom row produced
from a simple VAE with latent space of dimension d = 20 and o = 0.0001

5.3.4 Effect on the model optimized

The three algorithmic solutions discussed above have one thing in common; they all directly affect how

the total observed variance is distributed in the resulting model.

For B-VAE, the § parameter influences the variance of g, (z|z). Large § pushed g, (z|z) towards a

N (0, I) distribution while small 3 allows ¢, (z|x) having a much large variance with correlated dimensions.

Similarly, when fixing o, = I, the distribution of the total variability is now fixed by the user. Fixing
o, constrain the variance of py(x|z). Like 8 can be adjusted to distribute the variability in different
way, o, can be fixed to different values. For instance, if we wanted to force the latent variable to take
on larger portions of the variability we could fix o, to a small value, this was also suggested by Lucas
et al. [105].
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Figure 5.14 shows impressive reconstruction. These images are, on eyesight, as good as those of
Figure 5.9 but using totally different approaches. Earlier with selected a small 5 thus relaxing the
constraint applied by the regularization term and here we have fixed a small o,. Those two techniques
allow for most of the variability to be explained by the latent space. The fact that adjusting o, leads
to similar fit than adjusting 8 was mentioned by Lucas [105] but it was not mentioned that this is due
to both having similar effect on how the total variability is distributed across both components, latent
and observed, of the VAE.

Finally, the last modification discussed constrains the variance of py(x|z) when generating. For a
fixed z then = = p,(z) which is equivalent to fixing o, = 0; this turns the generating distribution from

a Normal to a Dirac Delta distribution.

Another way to perceive this constraint is that it ensures a correlation between the pixels. When
using .. (z) every pixel has the exact same distribution value of 0.5. This is because the mean of a
normal distribution is also its median; F(11) = 0.5 where F' is the distribution function of any normal
distribution. Consequently, pixels are perfectly correlated in their distribution value. We can produce
images that look just as good by sampling z ~ N(0,I) and then outputting p,(2) + a x 0,(z) for any

« as seen in Figure 5.15.
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Figure 5.15: Samples obtained from a simple VAE with z ~ N(0, 7).

To summarize, these three algorithmic solutions improve either the compression/decompression abil-
ities or generative abilities of the simple VAE by putting constraints on the variance either by modifying
the objective function while training or by modifying the sampling procedure when generating new obser-
vations. In the next section we argue that these modifications create new problems and we demonstrate
that the model resulting from those modifications does not respect the theory any longer which, in turn,

makes these new problems hard to solve.
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5.4 Issues with algorithmic solution

5.4.1 Application issues

The common algorithmic solutions discussed above solve some issues of the simple VAE as illustrated

in section 5.3, however, new problems also appear.

First, selecting the 8 parameter is a complicated task where the user has to define how important
is the reconstruction relatively to the regularization of g,. To this day there is no automated way to
select the right value for 5. Similarly, if we desire to fix o, the value of this fixed variance has to be

established heuristically.

Second, the improvement in reconstruction observed when fixing a small 5 or a small o, comes to
the detriment of the generative abilities of VAE. In fact, small 8 or small fixed o, leads to a ¢, with
high variance as explained earlier. This is problematic from a generative perspective. Remember that
we optimize a Monte Carlo sample of the ELBO, thus we train pg(x|z) using zs sampled from ¢, (z|z).
In other words, the NN function 6 is trained with zs generated from g¢,(z|z). Consequently if ¢, (z)
and pg(z) have drastically different supports then we do not know how does the NN 0 will react when

receiving inputs z sampled from py(z).

Another generative problem arises with large 3, this leads to a lack of variability in generated images.
The lack of variability in the generated data happens when g, (z|z) resembles too much the prior py(z),
instead of getting close to the intractable posterior py(z|z), and this problem has been recently coined
posterior collapse. As a matter of fact, if ¢, (z|z) ~ po(z) then q,(z|z) is independent of z; q,(z|x) does
not vary as x varies. This is not intended; we want the latent representation of x obtained through
¢, (z|z) to contain information about = and thus to be different for different xs. This leads to a latent
space that does not contain information about the observed space and this leads to an homogenized

reconstruction.

Figure 5.16 provides a visualization of the problems caused when g is either too large or too small. In
Figure 5.16a we see the high variance latent space comparatively to the much more constraint counterpart
of Figure 5.16¢c. The effect of posterior collapse, with too large 3, can also be observed in Figure 5.16d

where p,(2) is constant in z and the resulting image is the average of all digits.

These problems are easier to observe when using VAEs on a single digit data set:

We see bigger variability in the images spanned by the latent space in Figure 5.17b but also more
imperfections. This happens when 6 has to process zs unobserved in the training process. This contrast
with Figure 5.17d where all images are relatively good but they all look alike. This is a symptom of

posterior collapse.
Similarly we have high variance for g, (z|z) when fixing o, to a small value such as observed in Figure

5.18.

5.4.2 Theoretical issues

Additionally, we want to raise awareness towards theoretical issues with the algorithmic solutions detailed

in the previous section.
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(a) Observations x projected onto its latent representa-

tion using z ~ N(u.(x),0.(x)) with small 8
(b) Decoded latent space using p.(z) with small 8

(c) Observations = projected onto its latent representa-

tion using z ~ N(uz(x),0.(x)) with large
& (=), 0= (2) ge p (d) Decoded latent space using p.(z) with large 3.

Figure 5.16: Visualization of the latent representation.
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(c) Observations z projected onto its latent representa-

tion using  ~ N(ji. (z), 0. (z)) with large 3 (d) Decoded latent space using pq(z) with large g

Figure 5.17: Visualization of the latent representation.
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Figure 5.18: VAE with latent space of dimension d = 2 and ¢ = 0.0001

To begin, we quickly address the choice of observed data distribution. Though the VAE model
is very flexible in the form py(x|z) can take, lots of implementations use the Bernoulli distribution
[86, 137, 91, 40]. This is a problem since the Bernoulli distribution supports binary variable and thus
it should not be used to model pixels continuously distributed in (0, 1). Similarly, we also encounter a
support problem with normal distribution. Pixels are continuously distributed in (0,1) but the Normal
support is infinite. However these are more data compatibility problems rather than theoretical issues

with the proposed algorithmic solutions.

When strictly considering the solutions discussed, the biggest problem is the violation of certain
theoretical properties and guarantees of the simple VAE. For the S-VAE, by selecting a 8 < 1 the
resulting objective function is no longer a lower bound of the marginal log-likelihood log p(z) and thus

we are losing an important theoretical guarantee of the model.

We can take the S-VAE concept to its limit and fix 8 = 0, this produces the best reconstruction
possible but also eliminates one of the novelties of VAEs; the distribution of the latent variable z. In
fact, when § = 0 the parameters of g, (z|z) are not estimated anymore. The resulting model is much

closer to an AE fitted by maximizing a likelihood function.

A similar problem comes with combining the use of the MSE as the reconstruction error and the
deterministic sampling procedure. If we optimize p,(z) by minimizing the MSE, thus fixing o, when
training and the data generated is u,(z) itself, thus fixing o, when generating then we got rid of the
probabilistic components of x. Indeed, the § parameters can be reduced to i, and the variance of py(x|z)
is not considered at any point in time during training nor generation. In other words, the resulting model

is totally deterministic in x given z.

Combining these modifications altogether, and taking the 5-VAE to its extreme case we now have
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the following objective function:
(z — pz(2))?  where 2 ~ q,(z|z) (5.6)

When maximizing the resulting objective function of Equation 5.6, only p.(z) is trained. The model is
now an AE with a NN decoder optimized by minimizing the mean-squared reconstruction error and an

untrained probabilistic encoder.

5.5 Future work

As explained in section 5.3.4 the algorithmic solutions have one thing in common: they all influence how
the total variance is distributed between the latent variables and observed variables. Hence we believe
the cause of the problems observed in section 5.2 with the simple VAE is the lack of identifiability
between the variability attributed to both the observed and the latent component. In short, when fitting
latent variable models the total variability within the observed data x is split between the variance of
the latent variable and the variance of the observed variable and there exist infinitely many ways to
split the total variance in two. To solve this identifiability problem it is common to fix the variance of
one of the components or to decide how to distribute the variability between the two components when

establishing the optimization procedure.

For instance, in PCA the latent representation is designed to take on as much variability from the
observed data space as possible. In PCA, the variance of the latent representation z of size d is the

average of the d largest eigenvalue of the covariance matrix of the observed data.

We want to propose a new theoretical formulation, along with concordant implementation that solves
this variance identifiability problem. We believe having implementations concordant to the theory is
beneficial as it helps to generalize the model to new applications and it will allow us to rely on the
theory if problems come up, which is not the case with the modification now that the resulting model
has strayed away from the theoretical formulation. We also believe that fixing this variance identifiability
problem would be beneficial as it would better grasp the natural variability in a wide range of data sets

which is ignored in a deterministic AE.

Our goal is to allow for the total variance to be expressed differently than it is right now. We want
to take a closer look at probabilistic PCA (pPCA) [144, 143]. In this model, the variance of the latent
representation z of size d is the average of the d largest eigenvalue again and the variance of pg(z|z) is
the average of the leftover eigenvalues. Compared to PCA where the maximum variance projection is
enforced by the model, the solution in pPCA happens naturally without specific constraints. This is a
strong result we hope to use in our future work on VAE in order to balance naturally both components’
variance. Based on the results of PCA and pPCA where a maximum amount of the variability is
attributed to the latent variable and on the results we observed with S-VAE it seems like for the simple
VAE to produce better reconstruction and generations it needs to shift some of the observed distribution
variance to the latent representation variance. Similarly, we could study GMMSs, or any other model-
based clustering. Studying the similarities and differences between VAEs and GMMs could provide us
with interesting insight regarding the problems that VAEs suffer from.
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Additionally, once this balance is fixed, we believe it is important that the observed distribution
variance can be expressed in a more complete manner; we want to drop the conditional independence
assumption.

m m m
Var(z X;) = ZVar(xj) + Z Cov(x;,x;) (5.7)

i=1 j=1 i
In the simple VAE, the normal distribution that models observations has a diagonal covariance matrix,
which bottlenecks all of the observed distribution variance on the diagonal as suggested by the simple

decomposition of the total variance of Equation 5.7.

In other words, even if the total variance was distributed optimally between z and x|z we would also
need to let some of the covariance term of Equations 5.7 to be non-zero otherwise it will result in high
individual variable variance. This should also better model real data such as images where pixels in
a neighbourhood are highly correlated. In order to optimally fit a covariance matrix we are currently

exploring ideas of spatial statistics.

5.6 Related literature

We faced those problems within the first few years of VAE’s existence in early 2016 and slowly started
working on this chapter. Back then, none of the literature available mentioned those problems neither

how the small coding tricks established earlier were actually drastically changing the model.

Based on our research, the posterior collapse problem is the problem addressed the most in the
literature and it is now fully recognized as a problem and received a lot of attention in the last few years.
Though it was not in an attempt to solve the issue the paper presenting the 8-VAE formulation [63, 24]
was among the first to discuss the effect of the regularization term of the ELBO and it’s potential effect
of the variability in the images it produces. He et al. [62] recently provided an insightful investigation of
posterior collapse; they suggest that the cause of posterior collapse is the inference of the approximate

distribution lagging behind the true posterior at the early stages of training.

Alemi et al. [3] directly discussed the posterior collapsed problem with an information theory ap-
proach. The problem is indeed that z does not contain enough information about x and they propose
to optimize VAESs in a way that maximizes the mutual information between the observed variables and
the latent variables. Not only did they address the problem but they also encouraged research in that

regard.

After a publication from Dai et al. [37] discussing the relationship between PCA and VAEs, Lucas
et al. [105] made connections with the pPCA model. They demonstrate that the regularization term is
only partially responsible for posterior collapse but mostly that the variance parameter of the decoding
distribution was playing a huge role. This confirms what we suspect. The authors make a thorough
analysis of the effect of the variance term and suggest that the optimization procedure naturally favours
too much observed-data variance and suggest way to reduce it to solve the posterior collapse problem.

Overall this paper is a great contribution towards solving some of the VAE issues.

Lucas et al. [105] also show that, for a linear VAE, the ELBO has the same global maximum as the log

likelihood and thus the solution has scaled principal components as the columns of the decoder network.
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They also show that using the ELBO objective does not introduce new local maxima. Finally, after
establishing a metric for posterior collapse they demonstrate how fixing a small o, makes the posterior
collapse problem completely disappear. Additionally, we have shown in this chapter that restraining
the variance in p(z|z) drastically improves the reconstruction abilities of VAEs. Now, many solutions
and formulations have been proposed [4, 151, 128]recently to discuss the variance problems and we are

excited to see such keen interest towards this problem.

Although we have only noticed few articles discussing the issue with the current generative problem,
Dorta et al. [42, 41] came up with a similar observation that we did; u,(z) is commonly used to generate
images because of the poor performances of ancestral sampling which is caused by the lack of correlation

between pixels. The solution they proposed is a fully parametrizes covariance matrix for p(z|z).

5.7 Conclusion

The VAE model as defined in the literature [86, 83] is built upon a rigorous theory and the described
model is both innovative and a big contribution to the fields of machine learning and statistics alike. It
extends latent variable models to allow for more flexible functions between the latent and the observation

space and has empirically performed well on some real-data problems.

However it seems there are big difference between the theory and the popular implementations. The
current implementations fix some of the problems encountered when using VAEs but they do so by
taking out the components that made VAEs special. In this chapter, we demonstrated how most of the
simple fixes we found online are progressively transforming a VAE into an AE. We demonstrated that
these fixes also come with new problems. Finally, we provided a taste of the solutions we are currently

working on.



