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1 Introduction

As the type of data set researcher acquires contains more observations, more variables

and more complex structures, statisticians and computer scientists needs to establish

more �exible models and think of creative tools to allow for inference under the curse

of dimensionality and the big data problems. In the following set of notes we will

present the technicalities behind graphical models and the multiple inferences tools

that exist to �t those model to a data set.

We will begin by introducing graphical models, explaining their strength and

some of their properties. We will then explain how exact computation of the to-

tal likelihood can be computed under certain conditions before introducing the

Expectation-Maximisation algorithm as the cornerstone of inference on simple graph-

ical model. Finally, we will discuss how the graphical structure can be used as a

generative models and how dimensionality reduction is used in that sense.

When the posterior distribution of the latent variable is intractable, new inference

methods must be used. Variational Bayesian Inference is a popular solution to this

problem and recent development of Variationnal Inference for neural Network (VAE)

made possible the inference on complex graphical models with �exible approaches.

Sampling methods such has Importance Sampling or Monte Carlo Markov Chains

(MCMC) are alternative appraches to solve problem when expectation with respect

to Intractable distribution must be computed.

Finally, we will discuss some interesting applications of graphical models. Mod-

elling the confounder variable has been already been discuss using those tools and

can prove useful in causal inference. We will also be looking at modelling spatial

correlation with graphical model and �nally uses those model as generative models

in constructing interesting, general and powerful Procedural Content Generator.
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2 Graphical Models

2.1 Introduction

Even though the central topic of this document is inference on graphical models

and piratical applications, let us begin be noting that graphical model are actually

arti�cial. What is meant by arti�cial is the fact that they are actually never required

as all of the probabilistic inference can always be solved no matter how the variable

structure is represented.

That being said, Probabilistic Graphical Models have a lot to o�er in the sense

that they provide a very simple way to visualize the structure of a probabilistic model.

Insights into the properties of the probabilistic model like conditional independence

can be easily illustrated with a graph. Finally, the complex computations required

for inference can also be expressed in terms of graphical manipulations.

In a probabilistic graphical models, each node represents a random variable ( or

a group of random variable ) and the edges express some probabilistic relationship

between the variables.

2.2 Bayesian Networks and Random Markov Fields

By simple application of the product rule of probability, we can write joint distribu-

tions as a product a conditional distributions :

p(x, y, z) = p(z|x, y)p(y|x)p(x) (1)

A Bayesian Network is a directed graphical model that implies a natural fac-

torization of the joint distribution. Here is graphical model associated with the

factorization of equation 1 :
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Figure 1: Graphical representation of the factorization in equation 1

Mathematically speaking, there exist multiple correct factorization for the joint

p(x, y, z) but the purpose of these model is to suggest a factorization and proceed

with the inference according to that designated structure. Thus the factorization

of interest of a joint distribution can easily be obtain by taking a quick look at the

associated graph. In this situation for a graph with K nodes the joint distribution

is given by :

p(x) =
K∏
k=1

p(xk|pa(k)), (2)

where x = {x1, ..., xk} and pa(k) denotes the set of parent nodes of xk. Let

us note that the directed graph we are considering are subject to and important

restriction, there must be no direct cycles, i.e. we will be mostly looking at directed

acyclic graphs.

A Markov Random �eld is an undirected graphical model. These will be left out

for now.

2.3 Bayesian Network as generative models

It's interesting to use a Bayesian Network and its associated factorization (2) in

order to generate observations from the joint distribution, this technique is called
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ancestral sampling.

The process is really simple. We begin by sampling from the marginal distribution

of the random variables without parents. Then we proceed to successively sample

from the conditional distribution in which the parent variables have been set to

their sampled values. Being able to generate new observations can be useful in many

scenarios that will be discussed later on.

2.4 Conditional Independence

An important property that is inherent to certain factorization is conditional inde-

pendence. We say that x is conditionally independent of y given z if

p(x, y|z) = p(x|z)p(y|z). (3)

The following model :

z

x y

Figure 2: Illustration of conditional independence within a graph.

leads to the following factorization :

p(x, y, z) = p(x|z)p(y|z)p(z) (4)

and naturally express this property as we can easily demonstrate :
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p(x, y|z) =
p(x, y, z)

p(z)

=
p(x|z)p(y|z)p(z)

p(z)

= p(x|z)p(y|z).

(5)

On thing to notice is that the graphical representation of the probabilistic model

can be used to visualize the conditional independence. More rigorously, the concept

of D-separation aims at de�ning conditional independence based of the graphical

structure of a model.

Let's consider a general directed graph in which X,Y and Z are non-intersecting

sets of nodes and we would like to use the graphical representation to understand if

there exist some conditional independence between the sets of nodes we are interested

in. Quickly, if all path from any nodes of X to any nodes from Y are blocked by

some nodes in Z then we will claim that X is conditionally independent of Y given

Z. In other words, X and Y are D-separated given Z if no information can �ow

form X to Y without crossing Z.

A simple example of d-separation if provided by the concept of i.i.d. data set. If

we are interested in estimation µ the mean of the distribution of an observed sample

S = {x1, ..., xN}. It is important to understand the observations are independent

given the distribution. Graphically speaking, the joint p(S, µ) can be de�ned by

a prior p(µ) over the parameter and a set of independent conditional distribution

p(xn|µ), n = 1, .., N , i.e p(S|µ) =
∏N
n=1 p(xn|µ). This can graphically represented

as :
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Figure 3: Graphical representation of an i.i.d. data set with parameter µ

This gives us the perfect opportunity to introduce some graphical notations. It

is typical to use represent observed variables as shaded nodes and latent variables

as white one. Latent variable are unobserved variables, often they are of interest to

us as the graphical representation will be used to de�ned their relationship with the

observed data. A plate is also typically used to represent a set of unlinked variables.

Therefore, the �gure above would typically be depicted as :

µ

xn

N

Figure 4: Graphical representation of an i.i.d. data set with parameter µ using the

plate notation.

In the following sections we will introduce models with latent variables as they

are the main motivation for most of the following content of this set of notes.
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3 Latent Variable Models

3.1 Discrete Latent Variables

We will begin by introducing models with discrete latent variable. Latent variables

are unobserved variable that are in place to allow for a more �exible observation

distribution. As the models are including more variable to allow for greater �exibility,

the uses of a graphical representation for the model becomes more important as a

visualization tool.

To begin, we will introduce a classic discrete latent variable model, the mix-

ture model. By allowing the observations to be distributed according to a linear

superposition of various models, we greatly increases the number of shape that the

distribution p(x) can take. Let's de�ne z as a discrete latent variable representing

the various component of the mixture. Then we assume a distribution of x given z

and thus obtain the following model :

p(x, z|θ) = p(x|z, θ)p(z|θ), (6)

where θ represents the set of parameters for the distributions. In a fully Bayesian

set up, these parameters are considered random variables and prior are established

on those variables leading to the following model :

p(x, z, θ) = p(x|z, θ)p(z|θ)p(θ). (7)

For now, let's stick to a frequentist approach. Assuming z can take K di�erent

values, to �nd the marginal distribution over x we have to integrate out z :

p(x) =
K∑
k=1

πkp(x|θk), (8)
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where πk = p(z = k), the probability that the observation was generated form

the kth component.

The most used mixture model is by far the mixture of Gaussian where the condi-

tional distributions pθk(x) are Gaussian. In this case, the components di�ers in their

parameters θk = (µk,Σk). It is typical to de�ne z as a k-dimensional binary random

variable where one particular element zk is set to 1 and all other elemetns are equal

to 0. The parameter of this distribution is π, de�ne such that πk = p(zk = 1), with

0 ≤ π ≤ 1 and
∑K

1 πk = 1. Finally the marginal and conditional distributions are :

p(z|π) =
K∏
k=1

πzkk , (9)

p(x|z, µ,Σ) = N(x|µk,Σk), (10)

which leads to the well known marginal distribution :

p(x|π, µ,Σ) =
∑
z

p(z|π)p(x|z, µ,Σ) =
K∑
k=1

πkN(x|µk,Σk), (11)

Suppose we have a data set X = {x1, ...,xN} and we wish to model these obser-

vations with a mixture of Gaussian. The graphical model of such modelling would

look like :
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Figure 5: Graphical representation of an i.i.d. data set being �t to a mixture of

Gaussian in a frequentist set up ( the parameters are �xed unknown scalar, not

random variables).

We would like a technique that can e�ciently estimate the value of all the param-

eters. A classic statistical approach is to select the set of parameters that maximises

the likelihood of the observed data :

p(X|π, µ,Σ) =
N∏
n=1

p(xn|π, µ, σ)

=
N∏
n=1

K∑
k=1

πkN(x|µk,Σk)

⇒ ln p(X|π, µ,Σ) =
N∑
n=1

ln

(
K∑
k=1

πkN(x|µk,Σk)

) (12)

which is of course impossible to maximize with simple tools because of the sum-

mation inside the logarithmic. This is why we will use a special decomposition of the

likelihood function. This decomposition is the center-piece of inference on graphical

models.

3.1.1 The ELBO-KL decomposition

Let us demonstrate to popular likelihood decomposition that we will use. Notice that

these equations hold for any distribution q(Z) and we've dropped the parameters θ
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for readability :

ln p(X) = ln (p(X,Z)/p(Z|X))

= ln (p(X,Z))− ln (p(Z|X))

= ln (p(X,Z))− ln (p(Z|X)) + ln q(Z)− ln q(Z)

= ln

(
p(X,Z)

q(Z)

)
− ln

(
p(Z|X)

q(Z)

)
⇒ Eq(Z)[ln p(X|θ)] = Eq(Z)

[
ln

(
p(X,Z|θ)
q(Z)

)]
−Eq(Z)

[
ln

(
p(Z|X, θ)
q(Z)

)]
⇒ ln p(X|θ) =

∑
Z

q(Z) ln

(
p(X,Z|θ)
q(Z)

)
−
∑
Z

q(Z) ln

(
p(Z|X, θ)
q(Z)

)
= L(q, θ) +KL(q||p).

(13)

Notice that since the KL divergence is greater or equal than 0, then, L(q) is a

lower bound for the likelihood. It is de�ned as the evidence lower bound (ELBO)

or as the variational lower bound. Almost all techniques for inference on graphical

models is based upon the maximisation of this lower bound.

3.1.2 The EM algorithm : Maximization of the variational lower bound

for tractable posterior.

The Expectation-Maximization algorithm is an iterative procedure that slowly in-

creases the value of the variational lower bound with two distinct steps. We will see

the general idea and it how the algorithm intends to maximize the likelihood and

then we will see how this procedure leads to a maximization of the variational lower

bound.

We've already discussed the issue of maximizing the likelihood of the observed

data set in models with latent variables. Remember that :
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ln p(X|θ) = ln

(∑
Z

p(X,Z|θ)

)

and thus maximizing the likelihood is analytically impossible. For now, let's

assume that the complete-data set contains both X and Z and that the complete log

likelihood ln p(X,Z|θ) is straight forward to maximize. Since we only observed X,

the only information we have about Z is through the posterior distribution of the

latent p(Z|X, θ). Therefore we cannot directly use the complete-data log likelihood

and instead we will compute the expectation of the complete log likelihood under

the posterior distribution with the current set of parameters:

Ep(Z|X,θold)[ln p(X,Z|θ)] = Q(θ, θold) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ) (14)

which is the E step of the EM algorithm. Then, we will proceed at maximizing

Q(θ, θold) with respect to θ, the M step. For a mixture of Gaussian, the results are

quiet simple :

p(zn = k|xn, θold) = γ(zk) =
πkN(xn|µk,Σk)∑K
j=1 πjN(xn|µj ,Σj)

(15)

and then optimizing Q(θ, θold) is easier and leads to the following estimates :

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

Σnew =
1

Nk

N∑
n=1

γ(znk)(xn − µnewk )(xn − µnewk )T

πnewk =
Nk

N
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where Nk =
∑N

n=1 γ(znk).

Now we are going to use the ELBO-KL decomposition to demonstrate how this

technique succeed at maximizing the likelihood and we will motivate the need for

other techniques.

In section 3.1.1, we've demonstrated that L(q, θ) is a lower bound for the log-

likelihood of the observed data ln p(X|θ) de�ned as a function of the parameters θ

and a distribution over the latent variables q(Z). here we will now demonstrate how

every step of the EM algorithm increase L(q, θ) . In the E step, we maximize L(q, θ)

with respect to q(Z) while in the M, we then maximize L(q, θ) with respect to θ.

The E step consist of considering the e�ect of Z through the posterior distri-

bution p(Z|X, θ) under the current set of parameters, and then compute the ex-

pectation of the complete log-likelihood under that posterior distribution. This

in fact maximize L(q, θ) with respect to q(Z) by setting it to p(Z|X, θ). Since

L(q, θ) = ln p(X|θ) − KL(q||p) we see that by setting q(Z) = p(Z|X, θ), the KL

divergence vanishes which e�ectively maximize L(q, θ). This also highlights one of

the main assumption necessary to use an EM algorithm, we need to be able to com-

pute p(Z|X, θ) which is impossible for many choices of prior p(Z) and conditional

distribution p(X|Z).

In the following M step, we maximize L(q, θ) with respect to the parameters θ.

This will surely increases the value of L(q, θ), unles it is already at a maximum, but

it will also increases the value of the KL divergence term. Since we keep q(Z) =

p(Z|X, θold) �xed and update the parameters the two distribution compared in this

term will be di�erent and thus the divergence will become greater than 0 again.

Since both the ELBo and KL divergence term are going to increase by updating

the parameter to θnew the increase in log-likelihood is greater than the increase

in the lower bound. Let's actually see what happens when we substitute q(Z) by

p(Z|X, θold) in the lower bound :
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L(q, θ) =
∑
Z

q(Z) ln

(
p(X,Z|θ)
q(Z)

)
⇒ L(p(Z|X, θold), θ) =

∑
Z

p(Z|X, θold) ln

(
p(X,Z|θ)
p(Z|X, θold)

)
=
∑
Z

p(Z|X, θold) ln p(X,Z|θ)−
∑
Z

p(Z|X, θold)p(Z|X, θold)

= Q(θ, θold) + const.

Thus theM step maximizes the the expectation of the complete-data log-likelihood

under the posterior distribution of the latent as intended.

In this section, we've brie�y introduced discrete latent variables models and

an example of such model with the mixture of Gaussian. We've also introduced

a parameter inference algorithm, the EM algorithm, that works under some mild

condition, the necessity to compute the posterior distribution of the latent variable.

Finally, we've introduce a decomposition of the observed data log-likelihood that

gives us a general framework for inference on latent variable models. In the next

sections we will discuss the variational lower bound optimization with new tools and

under a very general framework, but before we will quickly discuss continuous latent

variables models.

3.2 Continuous Latent Variables

An important motivation for continuous latent variable models is dimensionality

reduction. As we will see, many data sets have the property that the data points all

lie close to a manifold of much lower dimension that the original data space. Being

able to fully grasp the statistical property of a data set of large dimension using a

set of continuous latex variables of lower dimension would then be very useful to

analyse these complex data set.
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A standard dimensionality reduction procedure is the principal component anal-

ysis (PCA) which we will introduce in this section. Then we will formulate the

dimensionality reduction problem in probabilistic set up and discuss inference for

those models. Finally we will introduce auto-encoders.

3.3 Principal Component Analysis

Consider a data set contained in a matrix X with N row and D column. Our goal

is to project this data onto a space of much lower dimensionality M << D while

maximizing the variance on the projected space, so to capture as best as possible

the variability within the original space.

Let's begin with the case where we try to project the data onto a 1-dimensional

space. We will try to de�ne a unit vector u1 representing the orientation containing

th highest variability in the data set. Each data point xn is projected onto that one

dimensional space via uT1 xn and so the mean of the projected data is uT1 x̄. This

implies that the variance of the projected data set is given by uT1 Cu1 where C is the

covariance matrix of the D-dimension data set.

Since we want the orientation that produce a maximum of variability we will have

to maximize uT1 Cu1 with respect to u1 while including the normalization condition

that uT1 u1 = 1, therefore we must maximize :

uT1 Cu1 + λ1(1− uT1 u)

which leads to Cu1 = λ1u1. This implies that u1 must be a eigenvector of C

and that λ1 must be a eigenvalue. By left-multiplying by u − 1T we observe that

uT1 Cu1 = λ1 and therefore to obtain the highest variability λ1 must be the biggest

eigenvalue and therefore u1 is the eigenvector associated with the largest eigenvalue.
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We could show in a similar manner that if we'd like to project the data on a M

dimensional space using matrix U of size D×M we would have to construct it using

the eigenvectors associated with the M largest eigenvalues.

3.4 Probabilistic PCA

A more general framework would be to assume that there exist a latent variable Z

of dimension M that contributed in generating our D-dimensional observations X

and we would like to �t the right parameters for the observed and latent variables

distributions.

Z

X

θ

N

Again, maximizing the variational lower bound is one way to proceed. Instead,

we will quickly introduce a set up where we can retrieve the classical PCA results

using a probabilistic modelling.

Assume a Gaussian prior distribution over the latent variables z :

p(z) = N (z|0, I)

and a Gaussian conditional distribution for the observed variable x :

p(x|z) = N (x|Wz + µ, σ2I).
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The �rst thing to notice is that with these distributions modelling choices, we

have the ability to extract exact form for the marginal distribution of the observed

data p(x) and for the posterior distribution of the latent variables p(z|x).

p(x) = N (x|µ,WWT + σ2I)

p(z|x) = N (z|M−1WT (x− µ), σ−2M)

where M = WTW + σ2I.

Since we have access to all of those distributions, exact log-likelihood maximiza-

tion is actually possible and here are the following parameters estimates :

µML = x̄

WML = U(L− σ2I)1/2R

σ2ML =
1

D −M

D∑
i=M+1

λi

where U is a D ×M matrix whose columns are given by the of size M of the

eigenvector associated with M largest eigenvalues. L is a M ×M diagonal matrix

for which non-zero elements are the corresponding eigenvalues and R s an arbitrary

M ×M orthogonal matrix. We also notice the nice intuitive properties of σ2ML, it is

the average variance associated with the deleted dimensions.

Even though we've retrieve the same projecting matrix, having built it upon a

probabilistic set up o�ers a great deal of bene�ts. The probabilistic set up under a

full Bayesian treatment will give us tools to automatically �nd the dimensionality

of the principal subspace, the model can be run as a generative model to provide

samples from the distribution, the existence of a likelihood function allow for direct

comparison with other probabilistic model, we can derive en EM algorithm for e�-

cient computation and to include mixtures of probabilistic PCA models and much

more.
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3.5 Auto-Encoder

Consider a Neural Network taking as input D-dimensional observations, and that

outputs also a D-dimensional vector. The most simple network has only one hidden

layer. If we set the dimensionality of the hidden layer to M < D then we have :

z1

zM

x1

xD

y1

yD

Figure 6: A simple Auto-Encoder

The middle layer containing the hidden unit can be perceived as our latent vari-

ables and since the number of hidden nodes is smaller than the number of inputs,

a perfect reconstruction should not be possible. We will therefore �nd the optimal

parameters w of the network so that it minimizes an error function that captures

the degree of mismatch between the input vector and the output of the network. A

simple error function could a sum-of-squares error :

E(w) =
1

2

N∑
n=1

||y(xn,w)− xn||2 (16)

If the hidden nodes have linear activations functions, it can be shows that the

error function has a unique global minimum and this minimum performs a projection
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onto the M -dimensional space spanned by the M largest principal components.

So far, the uses of a Network structure resulted in the same solution that we've

obtained with di�erent approach. One way to utilize the Network structure is by

adding layer with non-linear activation functions.

z1

zM

x1

xD

y1

yD

Figure 7: An Auto-Encoder with three hidden layer.

By creating a network with non-linear activation function we allow for curved

orientation for the M -dimensional space. It allows for more interesting combination

of the inputs and will hopefully grasp even more information about the original

D-dimensional observations.

The optimization problem is now a lot more complicated. We will need new tools

to solves that system, variational inference technique adapted for auto-encoder have

been recently developed, we will address those in the next section.
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4 Variational Inference

In section 3.1.2 we've explained the EM algorithm, an algorithm that uses the ex-

pectation of the complete data log-likelihood computed with respect to the posterior

distribution of the latent variables to approximate the log-likelihood of the observed

data. The algorithm then maximize this approximation with respect to the param-

eters. We've shown how this procedure succeed at maximizing the log-likelihood of

the data. We've also noted that in order to use the EM algorithm, we have to be

able to compute the posterior over the latent variables p(z|mathbfx).

In this section, we will introduce a general framework for inference on latent

variables models that relies on maximizing the variational lower bound. Remember

the ELBO-KL decomposition demonstrated in section 3.1.1 :

ln p(X) =

∫
Z
q(Z) ln

(
p(X,Z)

q(Z)

)
dZ−

∫
Z
q(Z) ln

(
p(Z|X)

q(Z)

)
dZ

= L(q) +KL(q||p),
(17)

where we've assumed we are now in a fully Bayesian set up were the parameter θ

are random variables and therefore we've included them in the set of latent variables

z.

We've already shown that L(q) is a lower bound for the log-likelihood of the

observed data and that the choice of q(Z) that maximizes this lower bound is the

posterior distribution p(Z|X). Since we cannot compute it, we instead consider a

restricted family of distributions q(Z) and then seek the member of this family that

maximize L(q).

On way to restrict the family of approximating distribution could be by using a

parametric distribution q(Z|ω) and then try to optimize Lq(Z|ω) as a function of ω.
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4.1 Factorized Distributions

A popular restricted family of approximate distribution are factorized distributions.

Considered a partition of the elements of Z into disjoin groups that we denotes Zj ,

where j = 1, ..., J . We then assume that these groups are independent and therefore

we can factorize the q distribution :

q(Z) =
J∏
j=1

qj(Zj) (18)

Among all the distributions that takes the form of 18, the goal is �nd the one

that maximizes the lower bound L(q). In order to optimize L(q) with respect to

all of the distributions qj(Zj we will optimize the lower bound with respect to each

of the factors in turn. Let us now replace substitute q(Z) in the lower bound and

analyse it with respect to one factor qi(Zi) which we denote by qi for simplicity :

L(q) =

∫
Z
q(Z) ln

(
p(X,Z)

q(Z)

)
dZ

=

∫
Z

J∏
j=1

qj ln

(
p(X,Z)∏J
j=1 qj

)
dZ

=

∫
Z

J∏
j=1

qj

ln p(X,Z)−
J∑
j=1

ln qj

 dZ

=

∫
Zi

qi

∫
Zj 6=i

ln p(X,Z)
∏
j 6=i

qjdZj 6=i

 dZi −
∫
Zi

qi ln qidZi + const

=

∫
Zi

qiEj 6=i[ln p(X,Z)]dZi −
∫
Zi

qi ln qidZi + const

(19)

where Ej 6=i[ln p(X,Z)] =
∫
Zj 6=i

ln p(X,Z)
∏
j 6=i qjdZj 6=i. Now if we �x {qj 6=i} and

maximize L(q) this is done by recognizing that the result of equation 19 is a negative

Kullback-Leibler divergence between qi and
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