
Cédric Beaulac

Statistical Learning Techniques : A short review

University of Toronto

Department of Statistical Science

1 Introduction

This is a personnal set of notes inspired by Hastie and al. [3] and Bishop [2]. Theses notes
glance quickly through most of the material covered in these two books.

Even though most Machine Learning (ML) books tends to talk as little as possible about
parameters and distributions, the basic ML problem is not that di�erent from the basic
statistical problem. This problem consist of recognizing patterns in some sort of data. Being
popular amongst computer scientist the basic solution is to write a program that encodes
a set of rules that are useful to solve the problem. Most of the time, the machine learning
approach is to de�ne some sort of error and pick weights such that it minimizes the error.

In supervised learning we typically de�ne a set of inputs variables, also called predictors,
that have some in�uence on a set of selected outputs variables or response. In this set
up, the researcher is deciding which variables are perceived as inputs and which one are
perceived as outputs. Classi�cation and regression are typical problems that supervised
learning algorithms are designed for.

Unsupervised learning is more interested in creating an internal representation of the
data points. The main goal is to characterize and capture some kind of structure in the
data. There's no imposed distinction between inputs or outputs in these types of problem.
Clustering is a good example of a typical problem where unsupervised learning might be
useful.

2 Supervised Learning

2.1 Introduction

Supervised learning is the most common approach to data analysis. In supervised learning,
the researcher is interest in the relationship between a set of chosen predictors and a set of
chosen response. The problem consist of learning the weights, the parameters, that de�nes
the relationship between those variable. It is important to notice that a structure is imposed
on the variables.

In this section we will see multiple approaches to supervised learning and we will use
algorithms that are of statistical nature and computer science nature. We will also brie�y
compare these two distinct approach of data analysis through out this section.

2.2 A simple approach : The k-nearest neighbour method

Let's introduce a very simple approach that can both solve the regression and the classi�-
cation problem, the k-nearest neighbour method. This quiet simple methodology consist of
both prediction the numerical value or the class of Y for a particular input x by averaging
over {y(xi)|i ∈ Nk(x)} where Nk(x) is the set containing the k closest point xi to x in our
data set. Here is a formal de�nition of the estimate of Y (x) :

1

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi

For the regression problem, the average as computed above is the prediction and for the
classi�cation problem the predicted class is the class that is the most represented in the set
Nk(x). This approach is really simple, easy to program and does not requires any speci�c
assumptions. Since it did not assume any distribution it is impossible to build a con�dence
interval for the estimate. It also produce a non-continuous estimates. We will discuss the
possibility of smoothing this estimator in the Kernel-based method section.

2.3 Linear Methods

2.3.1 Introduction

Linear methods are the most popular approaches to most supervised learning problem. They
are the bread and butter of applied statistician and data analyst. They are usually a good
way to take a �rst look at the data set. They are easy to use and will solve most of your
problem. Our knowledge of linear method is now deep and there exist many improvements
to the basic linear methods.

2.3.2 Basic methods

In this subsection we will introduce the basic linear approach for solving both the regression
and the 2-class classi�cation problem. Let us de�ne the model �rst :

Y = β0 +

p∑
j=1

Xjβj.

Here, we are assuming the relationship between a response variable Y and a set of pre-
dictors X as linear. We are trying to learn the set of parameter β that best explain this
linear relationship. A �rst approach to that problem is the well known least square methods.
Suppose we have the vector of inputs XT = (X1, X2, ...Xt) and we are trying to explain the
values of Y using the following estimates :

Ŷ = β̂0 +

p∑
j=1

β̂jXj

which can be written as :

Ŷ = XT β̂

2

by adding X0 = 1 into the vector XT . For a particular data point (xi, yi) the prediction

is then ŷi = xTi β̂ and then the prediction error is yi − xTi β̂. Minimizing the sum of squared
error :

∑n
i=1(yi− xTi β)2 is one of the many ways to estimates the β's that best �ts the data.

The solution to this minimization problem is : β̂ = (XTX)−1XTY . With this solution we
can solve the regression problem and the classi�cation problem.

The mean-squared error minimizer is a good example of an e�cient computer science
approach to data analysis. No assumption regarding the distribution of the data is made.
The researcher select a model and an error and then chose the weights that minimizes the
selected error measurement. Let us see a distribution-based approach to that very classic
problem.

We've already discussed one solution in order to estimates the β's which consist of mini-
mizing the squared error, let's now de�ne the distribution of Y by adding assumptions to the
model. The �rst set of assumptions are that the observations yi are uncorrelated and have
constant variance σ2 and that the xi are �xed. Then we can also assume that the conditional
expectation of Y is linear in X and that the error term is Gaussian, hence the new model :

Y = XTβ + ε

where ε ∼ N(0, σ2). With these assumption a wide theory of regression was born and
will not be covered thorough in these notes. Notice that we could now think of building
a Maximum Likelihood estimator for the β's since we have a distribution for Y . It is well
known that the solution of that maximization problem is also :β̂ = (XTX)−1XTY . This
estimator is also the unbiased estimator with the smallest variance.

Even though this is one of the easiest approach to solve the regression problem we can
already see the di�erences between a computer science and a statistical approach. The
mean squared error regression assume no particular distribution on the data, resulting in
an assumption-free analysis. The parametric approach assume the existence of a normally
distributed error which makes the model a bit more complex. An honest researcher would
have to prove that this assumption is reasonable. But a pro of that approach is that we now
have a distribution for our parameters. We can therefore build con�dence interval for our
weights and test for variable signi�cance.

Finally, quickly notice that if we suppose that we have multiples outputY = (Y1, Y2, ...Yk),
we could think of the following equivalent linear model :

Y = XB+ E

where Y is the n× k matrix of observations, X is the n× (p+ 1) input matrix, B is the
(p + 1) × k matrix of parameters and �nally E is the n × k matrix of errors. Then in this

scenario the squared error minimizer would once again be of the form : B̂ = (XTX)−1XTY.

3

2.3.3 Subset selection

Finding and selecting the optimal subset of parameters is an important part of �tting the
right linear model in order to explain the output variable. Adding parameters to the model
can only make the likelihood go higher but since over�tting can be a problem we must �nd a
way to make sure that each variable we add to the model increase the likelihood signi�cantly.
This is why we must address the subset selection problem with tools that consider both the
likelihood and the number of parameters.

The Akaike Information Criterion (AIC) is one of the popular way to help with subset
selection problem. The AIC is calculated according to : AIC = 2p− 2 ln(L), where p is the
number of parameters and L is the likelihood. Given a set of possible models, the preferred
model is the one with the lowest AIC. The Bayesian Information Criterion (BIC) is de�ned
as : BIC = p ln(n) − 2 ln(L). Once again we pick the model with the lowest value, but,
the AIC penalizes less strongly the number of parameters. Notice also that Yang [4] wrote
a full article demonstrating that the AIC is asymptotically optimal in selecting the model
with the least mean squared error while the BIC is not.

Even with these tools in hands, model selection is still a very complicated problem. The
AIC and BIC can prove useful if you need to choose from a small set of models.

There also exist many techniques in order to select the best subset of size k by picking the
subset that gives the smallest residuals sum of square amongst an original set of p explana-
tory variable. If p is small enough an exact procedure is possible, the best-subset selection
procedure. If p is rather larger the Forward and Backward stepwise selection procedure could
prove usefull into solving this kind of problem.

Other popular techniques are the ridge regression and the Lasso method. Both of these
methods consist in minimizing the least square error, under a certain condition of the vector
of parameters, more precisely :

βRidge = argmin
β

N∑
i=1

(yi − β0 −
p∑
j=i

xijβj)
2

subject to

p∑
j=1

β2
j ≤ t

which can re-written as :

βRidge = argmin
β

[
N∑
i=1

(yi − β0 −
p∑
j=i

xijβj)
2 + λ

p∑
j=1

β2
j

]
Solving this result in the following estimator :

β̂Ridge = (XTX+ λI)−1XTy

4

The Lasso uses a similar technique but instead uses the following constraint :
∑p

j=1 |βj| ≤
t. The best-subset selection completely drops all variables with coe�cients smaller thanMth
largest, forming a "hard-threshold". The Ridge regression does a proportional shrinkage
while the Lasso is an intermediary somehow by translating each coe�cient by a constant
factor λ and then truncating at 0, which is called "soft-thresholding".

2.3.4 Linear basis expansion

Suppose we want to generalize the model so that it can go beyond linearity. One solution
could be to replace the vector of X with a vector of transformations of X and then use linear
models like we previously did. This model would be :

Y =
J∑
j=1

βjhj(X)

where hj(X) : Rp → R is the jth transformation of X. What is simple about this model
is that once we have set up our basis function hj the model is linear in these new variables
and estimation is performed as before. Typically the transformation function can be the
product of 2 variables, then representing the interaction, any power of X or exponential and
logarithmic transformation. Up to that point both the error minimizing and the likelihood
maximisation approach are still viable.

An interesting way to use this linear basic expansion is via piecewise polynomial regression
and splines. The idea is to use transformation functions that are indicator functions for a
particular interval over X to build a piecewise model. As an example, using h1(X) = I(X ≤
b1), h2(X) = I(b1 < X ≤ b2) and h3(X) = I(X > b2) we will create a piecewise function
constant at the mean of Y over each of the three intervals created by our basis expansion.
By adding, h4(X) = I(X ≤ b1)X, h5(X) = I(b1 < X ≤ b2)X and h6(X) = I(X > b2)X
to the model we will obtain a piecewise linear �t. Finally using h1(X) = 1, h2(X) = X,
h3(X) = (X − b1)+ and h4(X) = (X − b2)+ will create a continuous piecewise linear �t.

The following �gure present many of these methods for piecewise regression. We start by
presenting the basic least square estimator, the we use indicator function of intervals as our
vector of inputs creating a piecewise constant regression, the �rst graphic of the second line
represent piecewise linear regression for every single interval and we forced continuity on the
next graphic. Finally, for the last line of �gure 1 we've included x2 as a covariates and then
forced continuity of the �rst derivatives.

5

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

x

y

Figure 1: Graphical results of a piecewise linear regression using linear basis expansion.

An order-M spline is a piece-wise polynomial of order M regression with continuous
derivatives up to order M − 2. A cubic spline is an order-4 spline. As an example the
piecewise-constant function in �gure 1 is and order-1 spline.

Observe that splines can be really e�cient for point estimation but as the number of
parameters grows larger and changes from on interval to another, building con�dence interval
and interpreting the parameters become more complicated.

6

2.3.5 Linear methods for classi�cation

In this short section we will quickly discuss the speci�cations regarding the classi�cation
using linear models. Suppose we have a discrete set of classes G, an intuitive idea is to �nd
a way to estimate P (G = k|X = x). If there are only two classes, The logistic regression is
a common solution to that problem :

log
P (G = 1|X = x)

P (G = 2|X = x)
= β0 + βTx

In classi�cation problem, it is interesting to de�ne a decision boundary. In the logistic
regression case, the decision boundary would be the hyperplane such that :

P (G = 1|X = x) = P (G = 2|X = x) =
1

2

⇒ 1

1 + exp(β0 + βTx)
=

1

2

⇒ exp(β0 + βTx) = 1

⇒ β0 + βTx = 0.

Therefore it would be the hyperplane de�ned by {x|β0 + βTx = 0}.

Let's now focus on problems where there might be more than two di�erent classes, let's
say K classes. An intuitive approach would be to perform the linear regression over an
Indicator matrix. We would build an observation matrix Y of size n × K with Yik = 1 if
G = k for the ith observation else 0. Once again the solution to such problem would simply
be : B̂ = (XTX)−1XTY. This method will produce estimates for P (G = k|X = x). Let's

call those estimates f̂k(x). Even though
∑

k f̂k(x) = 1 some of these estimates might be
negative or higher than one which can be problematic. That being said, prediction classes
by picking the class with the highest estimated fk(x) mights still be correct. One way to do
proper classi�cation using linear method is by proceeding a linear discriminant analysis.

Once again, we are trying to estimate P (G|X) for optimal classi�cation. Suppose fk(x)
is the density of X conditional on the G = k and suppose πk be the prior probability of class
k. We know that :

P (G = k|X = x) =
fk(x)πk∑K
i=1 fi(x)πi

.

We notice here that regarding the ability to classify having the fk(x) is su�cient. Many
classi�cation techniques are based on this result and use di�erent models for the densities of
X conditional on the class. In the section we will only discuss the linear technique which is
referred as linear discriminant analysis (LDA).

Let's suppose that each class density are a multivariate Gaussian density :

7

fk(x) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(x− µk)Σ−1k (x− µk)

)
Now assume the special case when all the classes have a common covariance matrix

Σk = Σ∀k. This will lead in a log-ratio of the posterior probabilities that is linear in x :

log
P (G = k|X = x)

P (G = l|X = x)
= log

fk(x)

fl(x)
+ log

πk
πl

= log
πk
πl
− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl).

This way we can build a hyperplane that act as decision boundary between any pair of
classes. From this equation we build the linear discriminant function :

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk,

and de�ne the decision rule to be : G(x) = argmaxkδk(x). Finally notice that we'll have
to estimate these various unknown parameter.

π̂k = Nk/N

µ̂k =
∑
{i|gi=k}

xi/Nk

Σ̂ =
K∑
k=1

∑
{i|gi=k}

(xi − µ)k)(xi − µk)T/(N −K)

There exist multiple way to re�ne that technique but we'll stop here for now. Notice that
we will also de�ne many non-linear method for classi�cation later on.

2.4 Tree-based methods

2.4.1 Introduction

Tree-based methods are a natural follow up from classical linear method as they are based on
a linear basis expansion. The main concept is to split the feature space into small boxes in
which the response variable is quiet similar. We must therefore be able to decide how should
we form these regions in order to optimize the inference. Now assuming we've managed to
partitioned the feature space into �ve regions R1, R2, R3, R4, R5, this model would look like
:

f̂(X) =
5∑

m=1

cmI{X ∈ Rm}

8

which is exactly the kind of model we've de�ned in section 2.3.4. If we use mean squared
as our error measurement then cm will be the mean of the response variable in that region;
cm = ave(yi|xi ∈ Rm).

A natural way to form these regions would be to perform successive binary partition
in the space of explanatory variables. Because of this, Tree-based methods are sometimes
named Recursive Partitioning Analysis (RPA). By proceeding that way, we will be able to
represent each regions as terminal nodes in a tree which will create an easy to understand
decision methods in order to predict the value of a new data point. This popular method
for tree-based regression and classi�cation is called CART (Classi�cation And Regression
Tree). This is of course the reason why we classify these methods under the category of
tree-based methods even though we will later learn about methods that do partitioned the
features spaces without creating an associated decision tree.

The following �gure represent a partition of the feature space and an associated decision
tree :

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

X1

X
2

R1

R2

R3R3

R4 R5

R2 R1

R4 R5

R3

X1 ≤ 0.4

X2 ≤ 0.2 X2 > 0.2

X1 > 0.4

X2 ≤ 0.6 X2 > 0.6

X1 ≤ 0.6 X1 > 0.6

Figure 2: Decision tree

2.4.2 Fitting a decision tree

Let's now discuss how shall we build a decision tree in order to solve a regression problem.
Suppose our data consist of N observations consisting of one response and p inputs. Now
suppose that we partition the feature space into M region then the linear model we propose
is :

f(x) =
M∑
m=1

cmI{x ∈ Rm}

Once again note that the average over the region m is the choice of ĉm that will minimize
the error if we use the sum of squares as our error measurement. Now the di�cult part is
to �nd the best binary partition. By best partition we mean the partition that minimize
our error measurement across the data set. Starting with all the data we must choose the

9

variable j on which we will perform a split and a split point s. This process will result in
creating two region R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. The goal would be
to �nd j and s that solve :

min
j,s

 ∑
xi∈R1(j,s)

(yi − ĉ1)2 +
∑

xi∈R2(j,s)

(yi − ĉ2)2


where ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). To solve this problem we
will basically try every possible solution since there is a �nite of them. For a �xed variable
j, since there is N observations there is N − 1 possible splits and we can scan through all
of the splits to �nd the optimal one. Then we can scan through all the p inputs in order to
�nd the minimizer of the above equation which will result in the best pairs (j, s) according
to our data set. We then repeat the process on each of the resulting region separately.

The next problem we have to take care of is how large we should grow our tree. Of course
if we build regions that only contains one observations each our error would be precisely 0
but that would grotesquely over�t the data. The generic strategy consist of growing a large
tree T0 where we stop the splitting process as soon as we reach some minimum node size.
Then we prune the large tree. This process is done by adding a cost for complexity and
building a new minimization criterion. Hatie & al. [3] use the following tree pruning model.
Let |T | be the number of terminal nodes and let's de�ne

Nm = #{xi ∈ Rm},

ĉm =
1

Nm

∑
xi∈Rm

yi,

Qm =
1

Nm

∑
xi∈Rm

(yi − ĉm)2.

Using these we can now de�ne a more re�ned criterion that penalize huge trees :

Cα(T) =

|T |∑
m=1

NmQm + α|T |.

In this equation, α serves as a tuning parameter where large values of α creates smaller
trees Tα. To create these trees we will successively collapse the internal node that produces

the smallest increase in
∑|T |

m=1NmQm and continue until we produce a single-node tree. We'll
then have a sequence of subtree that contains Tα for any α.

For a K-class classi�cation problem the technique is similar but we have to de�ne a new
error measurement. Let

pmk =
1

Nm

∑
xi∈Rm

I(yi = k),

10

be the observed proportion of class k in the region m. We can now de�ne multiple error
measurements, among other the Gini index and the deviance :

Gini index :
K∑
k=1

pmk(1− pmk)

Deviance : −
K∑
k=1

pmk log(pmk)

The �tting methods are otherwise the same.

2.4.3 Related models

In this section we will quickly introduce other technique which resolves around partitioning
the feature space into regions where the responses variable behave similarly. Even though
these are part of the Tree-based methods section, most of those methods do not uses binary
split of inputs and are therefore impossible to represent as a tree.

We will begin by introducing the patient rule induction method (PRIM) which also consist
of �nding boxes in the feature space, but is looking for boxes in which the response average if
high. Since this technique is somehow looking for maxima it is also called bump hunting. We
start with one big box containing all the data. The box is then compressed along one face
by a small amount and we choose this face according to the one creating the compressed box
with the highest mean. The process is then repeat until the compressed box contains some
minimum number of data points. The PRIM reverses the process and expand along any edge
is such an expansion increases the box mean. In most cases we will use cross-validation in
order to choose the optimal box size. We can then eliminates all the data points from that
box and repeat the process in order to build a sequence of box with high average response
values. This technique only works for regression problems or 2-class classi�cation.

Let's now discuss the hierarchical mixtures of experts (HME) procedure. In this model
tree splits are not hard decision but rather soft probabilistic ones. In that precise model,
the terminal nodes are called experts and do not represent a prediction but rather a model
for the output variable. For a regression problem the Gaussian linear regression model is
used and for classi�cation the linear logistic regression model is used. The set of parameters
is di�erent from one terminal node to another. The non-terminal nodes are called gating
network and have outputs of the form :

gj(x, γj) =
eγ

T
j x∑K

k=1 e
γTk x

and probabilistically splits data points among the possible models. The resulting model
is a mixture model with the mixture probabilities determined by the gating network models.
The parameter estimation is done using the likelihood, commonly an EM algorithm will be
used.

11

2.4.4 Random Forest

Bagging or bootstrap aggregating is a technique that consist of constructing many bootstrap
sample at �rst, then build trees out of these sample and �nally average the prediction for a
regression case or build a committee of trees that caste vote for a classi�cation problem. By
proceeding that way we will greatly reduce the variance of the estimate. Even though this
procedure is e�cient enough on its own the idea behind Random Forest is the build a large
collection of de-correlated trees in order to reduce even more the variance of the resulting
estimates.

The average of b i.i.d. random variable with each having the variance σ2 will be σ2/b. That
being said, if the variables are not independent but they rather have pairwise correlation ρ,
the variance of the average is ρσ2 + (1 − ρ)σ2/b. As b grows larger the second term will
converge to zero but the �rst term will remain. The concept of random forest is to improve
the variance reduction of bagging by reducing the correlation between trees, hence reducing
the �rst term. This is achieved in the tree-growing process by randomly selecting the inputs
variables in each tree.

We won't detail the process more than this, but random forest are becoming more and
more popular everyday and it is due to the impressive e�ciency of that technique.

2.5 Neural Network

2.5.1 Introduction

The Neural Network is a very popular tool right now since it is very e�cient at prediction for
both the classi�cation and regression problem. Even though it is impossible to interpret the
model, its predictive power is so impressive that the model is widely used in many machine
learning problem.

A Neural Network can be perceived as a generalization of the basic regression model
where we now allow for non-linear combinations of the various inputs. More precisely, in
the 1-layer Neural Network we allow for one more layer of non-linear transformation of the
linear combination of the inputs. In a multiple layer Neural Network we produce many very
complex non-linear functions in order to approximate the output which results in a precise
prediction but rather non-understandable relationship between the explanatory variable and
the response. Let's explain with more detail what exactly is a Neural Network.

2.5.2 Simple Model

For simplicity we will only look at the K-class classi�cation problem, but know that we could
use a similar model for a regression model. We have a size p vector X of inputs and a size K
vector Y of outputs where yj = 1 if and only if this observation is part of the jth class and 0
otherwise. Let us begin with the 1-layer Neural Network. We'll de�ne elements of the layer
as the following : Zm = σ(αTmX) creating a size M layer of derived features Zm where αm
is a size p + 1 vector of weights (parameters). As usual, let's de�ne fk(X) as the estimate
for yk and we'll build these estimate out of the derived features space the following way :
fk(X) = gk(βkZ) where βk is a size M + 1 vector of weights.

12

σ is named the activation function and notice that if it is the identity function, the
model collapse into a basic linear regression where g is the link function. By introducing
this non-linear transformation σ, a much more complex relationship between our variables is
allowed. Among many possible activation function the most commonly used are the Sigmoid
; σ(w) = 1

1+exp(−w) ,the Tanh ; tanh(w) = exp(w)−exp(−w)
exp(w)+exp(−w) and the Recti�ed Linear Unit ;

ReLU(w) = max(0, w). Ideally, we would want a di�erentiable activation function.

2.5.3 Fitting a Neural Network

Now let's discuss here how we are going to do inferences on the multiples unknown parameters
we have. First of all, we will denote the complete set of parameters by θ, which consist of
{αm;m = 1, 2, ...M} and {βk; k = 1, 2, ..., K}. Therefore there is M(p + 1) + K(M + 1)
parameters to be estimated. Being more naturally approached from a computer science
perspective there is no distribution here therefore inference is not build upon maximising
some kind of likelihood. For the basic problem we need �rst to de�ne a measure of error and
we will �x our parameter by minimizing the error.

As usual any error function could do, for regression we commonly use the sum-of-squared
errors :

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2,

and for classi�cation cross-entropy is commonly used :

R(θ) = −
K∑
k=1

N∑
i=1

yik log(fk(xi)).

To begin, notice that these is clearly no hope of �nding an analytical solution to the
equation ∇R(θ) = 0 therefore we will have to resort to iterative numerical procedures. θ
will then be estimated by minimizing the error term with a version of the gradient descent
algorithm that has been conceived especially for Neural Networks that consist of two parts,
a forward pass where we perform inference and a backward pass where we perform learning.
The technique is called back-propagation.

The general idea consists of computing �rst fk(x),∀k from which we can compute the
error R(θ), this is the forward pass. Then, from these errors we can compute ∂R

∂β
and ∂R

∂α
to

optimize via gradient descent the weights, this is the backward pass. Let's explain both part
with a bit more details.

We start by initializing the weights somehow. With the weights being �xed, the forward
pass consist of starting from the vector X and going forward through the network until
reaching fk(X). More precisely, during the forward part of the algorithm you compute
fk(X), ∀k by using the fact that fk(X) = gk(β

T
k Z) where Zm = σ(αTmX). Now that we've

computed fk(X),∀k we can proceed at calculating the error term : R(θ) =
∑K

k=1

∑N
i=1(yik−

fk(xi))
2, for instance.

13

Now that we've move forward through the network in order to compute the error term,
we're going to move backward through the network in order to compute derivatives, using
the chain rule, that are needed to estimate the weights that minimizes the error term. We
perceive this as going backward because we uses fk(X) to compute �rst the error term, then
we'll move backward through the �rst layer in order to compute ∂Ri

∂βkm
and then proceed

to estimate βkm by doing one iteration of a gradient descent algorithm. Once {βk; k =
1, 2, ..., K} have been estimated that way, we'll keep moving backward in the network in
order to compute ∂Ri

∂αml
using the chain rule and the proceed to estimate αml by doing one

iteration of a gradient descent algorithm.

With these new weights we could start over from the forward pass until a desired level
of convergence. This two-pass procedure is what is known as back-propagation, it was also
named the delta rule.

2.5.4 Deep Neural Network

Now that we've introduced the idea of a simple 1-layer neural Network it is important
to quickly discuss the idea of a deeper neural net. We could generalize the concept we've
introduced previously by simply adding more hidden layers. The de�nition and computation
of this layer would be done exactly like the �rst layer was created. Inference would also work
as previously de�ne; the back-propagation algorithm would work similarly with the forward
step having to pass through one more layer before obtaining fk(X) and the the backward
step would need to evaluate an entire new set of derivative for the new layer.

Deep neural networks are very popular in image recognition and have proven to be quiet
e�cient at it winning most of the competitions in that �eld in the last few years. That being
said it is still not clear how deep and how wide neural Networks should be. Ba [1] discuss
the idea that very wide neural network could be as e�cient as very deep network. We also
know that over�tting could be a problem in Neural Network.

In conclusion, it seems that multiple layer Neural Network are built and work similarly
as 1-layer neural network but we also know that for all of these network the question of the
optimal number of layers and the size of each of these layers is left unanswered.

2.6 Kernel based methods

14

3 Unsupervised Learning

3.1 Introduction

Remember that in Unsupervised Learning there are no such things as predictors and response
variable. We will not impose or force a certain structure on the data set, but we are still
trying to observe and recognize patterns.

We can use such methods in order to reduce the dimensionality of a data set before apply-
ing more conventional supervised learning methods. We could also be interested in �nding
clusters of data, which is in a way trying to split the data into some sort of natural groups.
Another important objective is to be able to model data density. Finally Unsupervised
learning can also provides us with tools in order to �nd hidden causes.

3.2 Clustering

3.2.1 Introduction

Cluster analysis is based of the idea of forming groups of observations that are more similar
to each other than to those in other groups. Mathematically speaking, suppose we have p
variables and n observations and we are trying to form natural groups. We will use all of
our p variables and try to identify data points that are signi�cantly close to one another in
the feature space and call these points a group.

In cluster analysis we are interested in the number of groups that belong in our data set,
identifying the group that each data point belong to and predicting the group of a potential
observation.

3.2.2 K-means algorithm

Let's begin by one of the main usage of Unsupervised learning, clustering. Here, we are going
to consider the problem of identifying groups, or clusters, of data points in a multidimensional
space. On intuitive approach that leads to an e�cient algorithm is the K-means algorithm.
Suppose we have a set of n d-dimensional quantitative variables xi, i ∈ {1, ..., n} and suppose
that they seem to naturally form K di�erent clusters. This can be somehow perceived as a
classi�cation problem, we are trying to form the right groups, or precisely identify the right
cluster for every single points. The idea behind that technique is to �nd a set of K middle
points representing what is the center of mass of each of these clusters. We would ideally
place that center of mass at a point that minimize some kind of sum of distance between
each point belonging to a cluster and the center of that cluster.

Remember that we are actually trying to form groups among our variables, so let's de�ne
rik ∈ {0, 1} such that rik = 1 if and only if xi belong to the cluster k. Therefore, we want to
both optimizing the position of this center of mass, mk and the assignment rik of every data
point such that we do have the center of mass and we do identify well what are the elements
composing these natural groups. In other words with are trying to �nd :

15

min
{m},{r}

N∑
i=1

K∑
k=1

rikd(mk,xi),

where d is any distance. From now on we will use the following : ||mk − xi||2. Since it
is impossible to �nd a global minimum, we will use an iterative algorithm that minimize
both parts separately. Notice that it is easy to do the assignments when we know all the
center points mk by simply assigning xi to the cluster that has the closest center point. It
is also easy to compute the cluster center point that minimize the above equation when the
assignments rik are �xed by simply taking the means of the xi that belongs to that precise
cluster since the mean minimizes the quadratic distance we are using.

We can therefore de�ne an algorithm in order to solve this clustering problem :

1) Randomly initialize the k means mk.

2) Compute the assignments that minimizes the errors :

rik =

1 if k = argmin
j
||xi −mj||2

0 otherwise.

3) Using those assignments, compute the new means :

mk =

∑
i rikxi∑
i rik

4) Return to step 2) and repeat until a desired level of convergence is attained.

The �gure 3 demonstrate an example of how the k-means algorithm works on a sample
of 2 dimensional observations divided in 3 clusters. The �rst plot shows the data set. In
the second image we initialize the 3 random means. The third graphic shows the original
assignments and then the forth plot shows the new means based on this �rst assignments.
The �fth graphic represents the �nal position of the means after 100 iterations while the
sixth graph represents the �nal assignment.

16

2 4 6 8

0
1

2
3

4
5

6
7

x[,1]

x[
,2

]

2 4 6 8

0
1

2
3

4
5

6
7

x[,1]

x[
,2

]

2 4 6 8

0
1

2
3

4
5

6
7

x[,1]

x[
,2

]

2 4 6 8

0
1

2
3

4
5

6
7

x[,1]

x[
,2

]

2 4 6 8

0
1

2
3

4
5

6
7

x[,1]

x[
,2

]

2 4 6 8

0
1

2
3

4
5

6
7

x[,1]

x[
,2

]

Figure 3: K-means algorithm

3.2.3 Gaussian Mixture Model

A more statistical approach would be to try to solve this clustering problem using a more
parametric approach. We will use Gaussian Mixture Model to explain the various clusters.
By adding a density assumption we will be able to de�ne likelihood enabling us to solve
the problem totally di�erently and to use tools like AIC and BIC to try to �nd the optimal
number of clusters for example.

Let us now de�ne more clearly the problem we are trying to solve. Once again we are
trying to build clusters or natural groups of data. The di�erence here is that we will assume

17

that every cluster represents observations from a particular distribution and that the entire
data set consist of a mixture model :

p(x) =
K∑
k=1

πkfk(x)

with πk the mixing coe�cients, where :

K∑
k=1

πk = 1 and πk ≥ 0∀k

The problem consist now of estimating the various parameters of the respective densities
fk(x). Even though the following procedure could be done with any density, we will assume
for now that we are actually looking at a Gaussian Mixture Model (GMM) i.e. fk(x) =
N(µk,Σk).

As we are now dealing with densities, maximizing the likelihood seems like an appropriate
solution in order ton �nd the optimal parameters :

logP (X|π, µ,Σ) = log
N∏
i=1

P (xi|π, µ,Σ)

=
N∑
i=1

logP (xi|π, µ,Σ)

=
N∑
i=1

log
K∑
k=1

πkN(xi|µk,Σk).

Notice that it is impossible to maximize analytically this value with respect to {πk, µk,Σk}.
Like for the k-means algorithm we will proceed via a step-wise maximisation process. The
trick here is to introduce a latent variable zi which represents the assignments of xi, in other
words, zi represent which Gaussian generated the observation xi. Let us de�ne z such that
p(z = k) = πk, then :

p(x) =
K∑
k=1

p(x, z = k)

=
K∑
k=1

p(z = k)p(x|z = k)

=
K∑
k=1

πkN(x|µk,Σk)

18

The commonly use solution to solve this maximization problem is the Expectation-
Maximization (EM) algorithm. The Expectation step consist of computing the posterior
probability that each Normal distribution generates each data point, from which we'll build
an approximation for z, and therefore we'll assign probabilistically each data points to one
of the Gaussian. During the Maximisation step you assume that the data is generated the
way computed during the previous step then estimates the various parameters of the Normal
distributions using maximum Likelihood estimators.

The algorithm looks like the following :

1) Initialize the means µk, the covariances Σk and the mixing coe�cients πk.

2) Evaluate the responsibilities :

γnk = p(zn = k|xz) =
πkN(xn|µk,Σk∑K
i=1 πiN(xn|µi,Σi

3) Estimate the parameters using the responsibilies :

µk =
1

Nk

N∑
n=1

γnkxn

Σk =
1

Nk

N∑
n=1

γnk(xn − µk)(xn − µk)T

πk =
Nk

N

where Nk =
∑N

n=1 γnk.

4) Repeat from step 2) until a desire level of convergence.

Picture 4 shows how the EM algorithm behaves. We've only drawn the means through
out the iterations in the following plots. The �rst one represents the data set while the
second images shows where we initialized our means. The 3 following pictures represents
where is located the means for the 5th, 10th and 50th iterations. Finally the very last plot
shows how the mean evolved during the 50 iteration of the algorithm before stabilizing near
the true mean of the Gaussian distributions that generated the data.

19

0 2 4 6 8

2
3

4
5

6
7

8

x[,1]

x[
,2

]

0 2 4 6 8

2
3

4
5

6
7

8

x[,1]

x[
,2

]

0 2 4 6 8

2
3

4
5

6
7

8

x[,1]

x[
,2

]

0 2 4 6 8

2
3

4
5

6
7

8

x[,1]

x[
,2

]

0 2 4 6 8

2
3

4
5

6
7

8

x[,1]

x[
,2

]

0 2 4 6 8

2
3

4
5

6
7

8

x[,1]

x[
,2

]

Figure 4: EM algorithm

The cluster analysis is another great problem where the di�erences between a computer
science approach and a statistical approach are easy to observe. The k-means algorithm did
not require us to assume anything about how the data is distributed, it de�ned an error
measurement and minimized it. The result are quiet precise and the model seems powerful
for a model that is totally assumption free. That being said, the classi�cations was rather
strict and it let little place to doubt and nuance. Without any distribution assumption there
is no such thing such as variance and points that were really close to getting assigned to
another group are unknown to the researcher.

Using Gaussian mixture models forces us to assume a particular distribution for the data

20

but the classi�cation is now explained by probability and gives us much more �exibility. We
can use probability as a measure of our belief that a point comes from a particular cluster.
Also, by using a parametric model, we could now use tools like that AIC or the BIC to select
the best number of clusters that is necessary to explain the data set behaviour.

3.3 Principal Components Analysis

3.3.1 Introduction

When we've introduced the Unsupervised learning section we've said that dimensional-
ity reduction is one of the main uses of the unsupervised approached. Among the many
dimensionality-reduction methods, the Principal Components Analysis (PCA) is the most
popular instance. Since high-dimensional data can be hard to handle for some classi�er, it
is useful to apply a dimensionality-reduction method, such as PCA, on some data set for
visualization or preprocessing purpose.

In order to reduce the dimension of the data set, PCA will project the data to a much
lower dimensional space. Even though we are trying to greatly reduce the dimension of our
data set we still need to detect di�erences among our data points, this is why PCA tries to
subsequently project the data on the direction in space with the highest variance.

3.3.2 Performing a principal components analysis

Suppose we have N observations {xn}Nn=1 of D dimensions, i.e. xi ∈ RD. The purpose
of PCA is to reduction the dimensionality of the data set by projecting to a much lower
dimensional space M << D :

x ≈ Uz + a

where U is a D ×M matrix and zi a M -dimensional variable.

Since we are trying to project onto a space that catches the di�erence among the data
point the idea we will need the covariance matrix C of the data set. Remember that :

C =
1

N

N∑
n=1

(xn − x̄)(xn − X̄)T

and that it is possible to build a spectral decomposition of a covariance matrix :

C = UΣUT .

where U are the eigenvector and Σ is a matrix with eigenvalues on the diagonal which
represents the variance of the data in the direction of the associated eigenvector. By selecting
theM biggest eigenvalues and associated eigenvector we will select the subset of orientations
of size M that best represents the total variability in the data set. We will then project x
onto this subspace :

21

z = UT
1:Mx.

z is now our new data set that lives on a lower dimension space.

22

References

[1] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems 27, pages 2654�2662. Curran Associates, Inc.,
2014.

[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[3] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2 edition, 2009.

[4] Y. Yang. Can the strengths of aic and bic be shared? Biometrika, 92(4):937�950, 2005.

23

