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Introduction

In this project, we build a model that can instanta-
neously produce accurate estimates of the total hourly
electricity demand given measurable environmental co-
variates.

Our model is based on the linear State-Space (LSS)
paradigm. In this model, the latent state-space allows
for a more expressive and flexible observed data dis-
tribution. The latent state Is also at the center of the
relationship between the response variable, the hourly
electricity demand, and the environmental variable, the
temperature, that serves as our predictor. The model Is
able to quickly fit large time series which I1s essential to
utilize all the information contained in the hourly data
set.

We established a list of expectations that we believe Is
Importantand want our prediction model to meet. These
characteristics are central to most of our design deci-
sions throughout this project. We want a model that:

m Produces predictions instantly; does not require
re-training for every single prediction.

mIncorporates the information contained in the
environment variables to improve the accuracy of the
predictions.

mAllows us to gradually Integrate more data; both
vertically and horizontally.

mAllows us to slowly incorporate new components to
the model In a successive manner.

To construct a model that achieves the expectations
we established, we made various assumptions about
the prediction procedure. We assume that:

mTotal hourly demand Is the response variable.

mEnvironmental data I1s available up to current time
during prediction.

Linear State-Space Model

A linear State-Space model (LSSM) is a latent variable
model. We defined a; as the unobserved latent state
at time t. The latent state a represents the traditional
components of a time series such as trends and cycles.
The set of ar Is percelved as an unobserved times series;
they are temporally correlated in that a; I1s a function of
a;_1. The various components of a are assumed to be
Gaussian.

We define y as noisy observations of the unobserved
time series. In a linear state-space model, y; is a linear
combination of a;. Once again, variability on observa-
tions 1s accounted for with a Gaussian variable. Rigor-
ously the model Is defined with the following equations:

Et NN(Oa R)a (1)
r]t ~ N(Oa Q)
with initial condition ag ~ N(up, Zg9). Z and @ are

pre-determined matrix that simply encompass the lin-
ear combination.

A LSSM can be graphically represented to visualize the
flow of information in such model :

The graphical model above assumes that the observa-
tions y are conditionally independent given the latent
state a. The structure of dependence Is the same as that
of a hidden Markov model (HMM) but we make the ad-
ditional hypothesis that the latent series and observed
series are jointly Gaussian. This assumption iIs central to
the latent space estimation technique and observation

prediction technique, respectively the filtering algorithm
and the forecasting algorithm.

.yt — Zat + 81’9
ar = da;_1 + n,

Filtering
Filtering is the process of estimating the distribution of
the latent state a; given the observations

Yie = (Y1, Y2, -5 Yt)
up to time current time t. Under the Gaussian assump-

tion, this can be done by evaluating the following condi-
tional expectation and variance:

51t|t = Ela¢|yr:l,

Prt = Var(at|yi:t).
Actually, filtering is a forward algorithm that recursively
computes the filtered expectation and variance of the la-
tent state, that is a¢; and Py for t =1,2,..., N. Given
initial values agjo = o and Poo = 2o, the filtering al-
gorithm successively computes a;; and Py using the
previous expectation &;—_1;—1 and variance Ps_qj;—1 ac-
cording to the model defined by (1).

Forecasting

Forecasting is the prediction process and a p step-ahead
forecast for a LSSM can be performed by evaluating the
following conditional expectation:

YN+t|N = Elyn+elyi:n]
fort = 1,2,...,p with N being the length of the ob-
served series.

According to equations (1), the forecasted value yni¢n
can be expressed using the conditional expectation of
the latent state:

IN+eiN = ZE[anie|ly1n]. (2)

It can be shown in turn using equations (1) that the ex-
pected latent states admit the following recursion:

Elan+tlyin] = PE[an+e-1ly1n]. (3)
Recall that the last expectation computed by the filtering
algorithm is
an = Elan|yin].

When combining equations (2) and (3) with the N™ fil-
tered state ap, we obtain a simple way to compute the
p step-ahead forecast:

INseiN = ZE[anselyrn] = Zdfap,
fort = 1,2,...,p. This is considered the traditional
forecasting technique from now on.

Multivariate LSSM

To Incorporate an additional set of observed variables x,
we define a new multivariate LSSM with two conditionally
Independent set of observed variables. We define:

Xt:g:at_l_pt, ptNN(Oa S)a
The components of this multivariate LSSM are

ma; latent state
W ;. response variables
B X, covariates

This new model can be graphically represented with :

Roughly speaking, this model assumes that x and y are
two different noisy observations of the same underly-
Ing time series a. Our graphical representation suggests
that y; and x; are conditionally independent given the
state ay.

The originality of this approach i1s that we do not con-
sider the covariates as fixed parameters, but instead as
another observed time series. Consequently, in the next
section we describe a new forecasting technigue that ef-
ficiently propagates the information from x to y.

Conditional Forecasting

Our main contribution 1s the adaptation of the tradi-
tional forecasting algorithm that we coined conditional
forecasting. Our technique combines elements from
both the filtering algorithm and the traditional forecast-
Ing algorithm.

Assume we observed both series x and y up to time N
and we want to forecast p values of the response vari-
ables y. At time t, fort € (1,2,...,p) we observe
predictors x from x7 to xy4¢ and try to estimate yn.++
with ¥n+¢n. The conditional forecasting estimate can
be stated as evaluating the following conditional expec-
tation:

YN+eIN = ELYN+elyin, X1:n4¢]

fort =1,2,...,p. Because of the conditional indepen-
dence induced by our model, this forecasted value can
be written in terms of the hidden state as

)7N+t|N — ZE[aN+t|)’1:Na X1:N+t] = ZAN++¢, (4)
where Z Isthe pre-determined combination matrix from
equations (1).

Finally, we adapted the filtering algorithm to run on
the following network with provides us with the needed

AN+t

Consisting of a filtering part followed by a simple ma-
trix multiplication our conditional forecasting algorithm
s extremely fast (1000 predictions in 8.31 seconds).

In addition, If we receive new observations of the re-
sponses variables y, say p observations, we can run the
traditional filtering algorithm from N to N + p without
having to restart from scratch which allows us to gradu-
ally integrate more data when the opportunity presents
itself.

Implementation Choices

For this case study, we have set the hourly total electric-
ity demand to be the response y. Our current implemen-
tation uses temperature as the environmental variable
x, but our proposed formulation allows to incorporate
more than one covariate.

In our current iImplementation, the latent state Is a 32-
dimensional variable composed of two main parts:

| A (deterministic) cyclical component for both

variables with daily, weekly and yearly periods
encoded using linear combinations of sinusoidal
functions.

B A stochastic local-level component whose prior

distribution Is a Gaussian random walk with correlated
steps between the response and the covariate.

Point #2 is key to the relation between x; and y;; the
heuristic Is that a large deviation of the temperature
from Its expected periodic components at time ¢t should
correspond to such a deviation of the total electricity de-
mand at ¢. This Is encoded in the local-level component
of the latent state where we allowed the local-level of
the predictor to be correlated with the local-level of the
response.

The magnitude of this correlation I1s established by
cross-validation. We settled on a high correlation close
to 1.

We also had to Incorporate a dynamic pattern in the
local-level component to model the fact that the elec-
tricity demand Is negatively correlated with the temper-
ature in the winter and positively instead in the summer.

Our Implementation relies on clever uses of the
efficient filtering algorithm provided with the
dlm package In R and Is available on GitHub at
github.com/CedricBeaulac/SSC_CaseStudy_2020.

Experiments and Results

We now test our conditional forecasting algorithm. To
begin, we train both models on three years of data.
Then we predict the hourly electricity demand for two
full months (1344 predictions) with traditional and con-
ditional forecasting. Finally, we compute the error for
both set of predictions; In this case we used the rec-
ommended mean absolute value error function. We re-
peated this procedure 200 times by randomly sampling
a time point within the first 10 years of data. The results
are shown bellow:

Conditional forecasting-

Techniques

Traditional forecasting-

Mean absolute value error (logarithm)

Empirically, the error of our forecasting technique has a
lower expectation and has smaller variance than the er-
ror of the traditional forecasting. This improvement In
accuracy leads us to believe that the model shows great
potential for further improvement such as adding more
environmental variables for instance. The plots bellow
can help visualize the ability of our conditional forecast-
Ing algorithm to account for the deviation of tempera-
ture from its pure cyclical constituent during prediction:

Traditional forecasting

Fisure: One week of hourly electricity demand (in yellow) and the
associated predicted value (red dots) along with the temperature
(black).

Strengths:

m Our proposed LSSM is very fast to train.

m Our conditional forecasting technique achieves the
four characteristics we established in the
Introduction.

mThe model Is very flexible; we can include more
components to the latent state.

mThe model allows us to control the type of
relationship between y and x by putting
correlations only on certain components of the
latent state (the local-level in this example).

Weaknesses:

m Our model contains many hyperparameters and
cross-validation is difficult to perform.

m Our techniques are constructed upon a few
heuristic decisions which could not be automated
(no meta-learning possible at the moment).
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