
NEURAL NETWORKS WITH FUNCTIONAL RESPONSE

Sidi Wu, Cédric Beaulac & Jiguo Cao
Department of Statistics and Actuarial Science, Simon Fraser University

NEURAL NETWORKS WITH FUNCTIONAL RESPONSE

Sidi Wu, Cédric Beaulac & Jiguo Cao
Department of Statistics and Actuarial Science, Simon Fraser University

Introduction

In functional data analysis (FDA), the regression of
a functional response on a set of predictors can be
a challenging task, especially if the relation between
those predictors and the response is nonlinear. In
this work, we adapt neural networks, a machine
learning technique, to solve this problem.

We design a feed-forward neural network (NN)
to predict functional curves with scalar inputs, using
the following procedure:
1. Transform the functional response to a finite-

dimensional vector of coefficients.
2. Construct a NN with those coefficients as outputs

and the scalar predictors as inputs.
3. Train the NN with the proposed objective function.
4. Predict the functional response using NN outputs.

Basic Assumptions

Suppose we have N subjects, and for the i-th
subject, the input is a set of scalar variables
X i = {Xi1, Xi2, ..., XiP}, and the output is a
functional variable Yi(t), t ∈ T in the L2(t) space.
Note: In reality, Yi(t) is usually measured in a
discrete manner, i.e., Yi(tij) at mi time points or
locations {tij}mi

j=1, with some observation error.

Representations of a Function
(Dimension Reduction)

- Mapping to Basis Coefficients -

In FDA, it is common to represent functions using
basis expansion. Specifically, the information of Yi(t)
can be summarized into a set of finite-dimensional
vector of basis coefficients as:

Yi(t) =

K∑
k=1

cikθk(t) = θ′C i (1)

•θ: vector of the basis functions θ1(t), ..., θK(t) from
a selected basis system, e.g. Fourier or B-spline.

•Ci: vector of the basis coefficients {cik}Kk=1.
•K: a pre-defined truncation integer.

- Mapping to FPC Scores -

The other popular method for dimension reduc-
tion is functional principal component analysis
(FPCA). Let µ(t) and K(t, t′) be the mean and
covariance functions of Y (t), and accordingly,
K(t, t′) =

∑∞
k=1 λkϕk(t)ϕk(t

′), where {λk, k ≥ 1} are
the eigenvalues and ϕk’s are the corresponding
eigenfunctions satisfying

∫
ϕ2k(t)dt = 1.

Denote Ỹi(t) = Yi(t)−µ(t) as the centered functional
response, following the Karhunen-Loéve expansion,
Ỹi can be approximated as:

Ỹi(t) =
K∑
k=1

ξikϕk(t) = ϕ′ξi (2)

•ϕ: vector of the first K functional principal compo-
nents (FPC).

• ξi: vector of the FPC scores {ξik}Kk=1, where ξik =∫
{Yi(t)− µ(t)}ϕk(t)dt.

• K: the truncation integer determined by the desired
proportion of variance explained.

NNBB & NNSS

- NN for Basis Coefficients (NNBB) -

Given Eq.(1), learning how X regress on Y (t) can
be naturally replaced with learning how X regress
on the basis coefficients {ck}Kk=1. Hence, we set
{ck}Kk=1 to be a function of X, with a mapping
function F (·) from RP to RK, as:

C i = F (X i) (3)

Eq.(3) can be extended to the mapping from X to
the functional response Y (t) as Yi(t) = θ′F (X i).

Then we propose to apply a dense feed-forward NN
as the mapping function F (·), and the basis
coefficients [ci1, ci2, ..., cik] ∈ Rk are the outputs of the
NN. The model can be expressed as:

C i = NNη(X i) = gL

· · · g1

 P∑
p=1

w1pXip + b1

 (4)

• g1, ..., gL: the activation functions at each layer.
• η: NN parameter set consisting of weights {wℓk}Lℓ=1
and bias {bℓ}Lℓ=1 of all hidden layers.

NNη(·) is optimized by minimizing the objective
function:

LC(η) =
1

ntrain

ntrain∑
i=1

K∑
k=1

(ĉik − cik)
2 (5)

where ntrain is the number of observations in the
training set, and cik’s are obtained following Eq.(1).

- NN for FPC Scores (NNSS) -

Similarly, the FPC scores can represent Y (t) and
then act as the outputs of the NN, and we obtain:

ξi = NNη(X i) = gL

· · · g1

 P∑
p=1

w1pXip + b1

 (6)

and NNη(·) is trained w.r.t. the objective function
Lξ(η) =

1
ntrain

∑ntrain
i=1

∑K
k=1(ξ̂ik − ξik)

2.

NNBR & NNSR

We further propose to modify the objective function
to directly minimize the prediction error of the
response variable:

LY (η) =
1

ntrain

ntrain∑
i=1

mi∑
j=1

(Yi(tij)− Ŷi(tij))
2 (7)

Note: Eq.(7) is implementable because the relation
between Ŷi(tij) and Ĉi (or ξ̂i) is linear, thus we can
easily compute the derivative of Ŷi(tij) as well as the
gradient of (Yi(tij)− Ŷi(tij))

2 w.r.t. Ĉ i (or ξ̂i).

NNBB (or NNSS) trained by minimizing Eq.(7) is
named NNBR (or NNSR), and can be treated as a
NN with an extra output layer, where the final output
is the weighted sum of the original outputs.

A graphical representation of the proposed neural network with an extra
output layer (L = 2, P = 3, K = 4).

More Extensions

Eq.(7) can be further modified for different needs:
• Irregularly-spaced functional data

LYirr(η) = LY (η) · 1 (Yi(tij) is observed) (8)

• Smoothness control for Ŷ (t)

Lpen(η) = LY (η) + λ

K∑
k=3

(∆ck)
2 (9)

where ∆2ck = ck − 2ck−1 + ck−2 is the difference of
a set of consecutive basis coefficients, and λ is
the smoothing parameter.

Implementation

- Data & Models for Comparison -

• Data: generated by

Y (tj) =

10∑
k=1

ζk(X)ψk(tj) + ϵ(tj), j = 1, ..., 40

–X = {X1, ..., X10}: vector of random predictors.
– ζk(·): nonlinear functions for some k.
–ψk(·): B-spline basis functions.
– ϵ(·): random noise function.

• Models: Function-on-scalar regression model
(FoS), NNBB, NNSS, NNBR & NNSR.

- Results -

• Prediction Accuracy
Methods FoS NNBB NNSS NNBR NNSR

Mean 24.5373 3.8478 5.7422 1.1548 1.7862
Std. Dev. 0.7632 0.7914 0.2055 0.0958 0.0810
p-value - <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

Table of Mean and Standard Deviation of the MSEs between Y (tj) and
Ŷ (tj) in the test sets (20% Obs.) of 20 replications, along with the
p-value of the two-sided paired t-test which compares the MSEs of

each NN-based model to those of FoS.

• Relation Reconstruction

Visualizations of true ϕ6(t) (top left), ϕ̂6,FoS(t) (top right), ϕ̂6,NNBB(t)

(bottom left), and ϕ̂6,NNBR(t) against X6 (bottom right), respectively.

Summary

- Highlights-

• Have superior predictive power, especially when
the relation between the predictors and the
response is non-linear.

• Flexible for both regularly or irregularly spaced
functional data.

• Can handle a large number of predictors.

- Limitations -

• Contain many hyper-parameters and the tuning
process could be time-consuming.

- Potentials -

• Extend to predict a multi-dimensional (mainly
two-dimensional) functional response.

• Combine with existing work to construct a NN
taking functional inputs and functional outputs.

References
[1] J. O. Ramsay and B. W. Silverman. Functional Data Analysis (Second Edition). Springer, 2005.

[2] Fabrice Rossi and Brieuc Conan-Guez. Functional multi-layer perceptron: a non-linear tool for functional data analysis. Neural Networks, 18(1):45–60, 2005.

[3] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533–536, 1986.


