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Abstract 

Dementia of Alzheimer’s Type (DAT) is a complex disorder influenced by numerous factors, 

but it is unclear how each factor contributes to disease progression. An in-depth examination of these 

factors may yield an accurate estimate of time-to-conversion to DAT for patients at various disease 

stages. We used 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, 

Demographic, and CSF) data modalities in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. We used a deep learning-based survival analysis model that extends the classic Cox 

regression model to predict time-to-conversion to DAT. Our findings showed that genetic features 

contributed the least to survival analysis, while CDC features contributed the most. Combining MRI and 

genetic features improved survival prediction over using either modality alone, but adding CDC to any 

combination of features only worked as well as using only CDC features. Consequently, our study 

demonstrated that using the current clinical procedure, which includes gathering cognitive test results, 

can outperform survival analysis results produced using costly genetic or CSF data. 
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1 Introduction 

Alzheimer's Disease (AD) or Dementia of Alzheimer’s Type (DAT) is a progressive 

neurodegenerative condition characterized by psychiatric, cognitive and structural deteriorations that 

accounts for 60% to 80% of all dementia cases. One out of every three seniors dies with Alzheimer’s 

disease or another type of dementia, accounting for more deaths than breast and prostate cancer 

combined (Alzheimer’s Association 2021). Since there is no cure available for AD, there is a substantial 

interest in finding ways to better understand the characteristics of the disease and to develop methods 

that can successfully detect those at risk at an early stage of the disease before symptomatic onset.  

Many factors contribute to the development and progression of Alzheimer's disease, but the 

extent to which each factor affects the disease is still unknown. As a result, it is critical to thoroughly 

investigate the effects of phenotype, genotype, and lifestyle factors on the development and progression 

of DAT. Data from various modalities were obtained and analyzed in the search for biomarkers that can 

accurately diagnose DAT in its early stages. Magnetic resonance imaging (MRI), for example, is the most 

widely used data modality for identifying specific structural changes in terms of atrophy in the brain 

associated with DAT progression (Hua et al. 2008; Vemuri and Jack 2010; Popuri et al. 2020). 

Cerebrospinal Fluid (CSF) biomarkers such as abnormal amyloid and tau levels can reflect the intensity 

of disease progression and have been extensively studied in relation to Alzheimer's disease (Olsson et 

al. 2016; Finehout et al. 2007; Anoop et al. 2010). Another modality that has been shown to be effective 

in predicting the likelihood of developing DAT even before pathological changes begin is genetic 

information. A number of genetic risk factors have been linked to DAT, with the APOE-𝜀4 allele 

accounting for 20-25 percent of cases (Lambert et al. 2013). Multiple genome-wide association studies 

(GWAS) have also found possible links between Single Nucleotide Polymorphisms (SNPs) and DAT 

(Jansen et al. 2019; Kunkle et al. 2019; Schwartzentruber et al. 2021). At the time of writing this 

manuscript, 20 genes had been reported to be associated with AD via GWAS, the majority of which were 

associated with moderate to small effect sizes (Lambert et al. 2013). Other factors studied alone or in 



   
 

 

combination with other modalities to predict Alzheimer's disease progression include socio-demographic 

and clinical data, as well as cognitive performance tests (Grassi et al. 2019; Lei et al. 2020; Devanand et 

al. 2008). The growing availability of databases containing multiple data modalities, such as the 

Alzheimer's Disease Neuroimaging Initiative (ADNI), has allowed researchers to investigate the effects 

of integrating multi-modal data in DAT risk prediction (Venugopalan et al. 2021; An et al. 2017; Zhou et 

al. 2019). While it has been demonstrated that combining different data modalities improves diagnosis 

performance, there is still a lack of understanding about how each modality contributes to DAT diagnosis, 

and translation into practice is still limited. 

Early diagnosis is critical for successful disease management and the ability to use disease-

modifying drugs to alleviate symptoms. In current clinical practice, a DAT diagnosis cannot be made until 

the patient exhibits clear signs of cognitive decline, which can be attributed in part to the multifactorial 

nature of DAT. Methods for predicting the probability of a patient developing Alzheimer's disease as a 

function of time, known as survival analysis, are important tools in helping understand the characteristics 

of DAT. One of the most important contributions of survival analysis methods is that they can account for 

individuals who are not followed up to their dementia onset time, i.e., censored individuals, allowing them 

to utilize and provide more information than the traditional classification methods. In addition, it is 

necessary to forecast whether a subject would convert to dementia, and when, specifically, the 

conversion would occur. While classification methods can solve the first problem, they are not suitable 

for predicting the time to conversion to DAT, particularly in the presence of censored individuals. 

Therefore, survival analysis is a more appropriate method, when the time to the diagnosis of dementia 

may be unknown. 

The application of survival analysis methods to predict the time to conversion of Alzheimer’s 

disease is relatively limited, and the available studies in the literature have mostly focused on using single 

data modalities as predictive features (Nakagawa et al. 2020; Orozco-Sanchez et al. 2019; Aschwanden 

et al. 2020), or only on predicting the time to DAT conversion for patients with Mild Cognitive Impairment 



   
 

 

(MCI), or time to conversion to MCI for healthy subjects rather than predicting the conversion time for 

subjects in all stages of the disease (Pölsterl et al. 2019; Spooner et al. 2020; Lu and Colliot 2021). To 

the best of our knowledge, this is the first study that performs a comprehensive analysis on the prediction 

of the time to conversion to DAT for subjects in various stages of the disease using multi-modal data and 

compares the predictive power of each data modality and the effect of each modality on the disease 

diagnosis and progression. 

2 Material 

2.1 Data 

Data used in preparation of this study was obtained from the publicly available Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). In addition, ADNI aims to provide researchers with 

the opportunity to combine genetics with imaging and clinical data to help investigate mechanisms of the 

disease. 

2.2 Data selection and stratification 

A total of 401 subjects from the first phase of ADNI (ADNI1; Mueller et al. 2005) who had the 

following 5 data modalities available at baseline were included in the study: 

1. MRI data; 

2. Genetic data including Single Nucleotide Polymorphism (SNP) + APOE information (GEN); 

3. Cognitive tests (COG) such as the Mini Mental State Examination (MMSE);  

4. Demographic data (DEM) such as age, sex, education and marital status;  

5. Cerebrospinal fluid (CSF) data.  

http://adni.loni.usc.edu/


   
 

 

A data stratification method with a focus on the subjects’ past, current and future clinical diagnosis 

(Popuri et al. 2018; 2020; Mirabnahrazam et al. 2022) was used to divide the subjects into five subgroups. 

Based on the information available during the ADNI study period, each participant was assigned to one 

of the five subgroups described in Table 1. Additional detail about the data stratification method can be 

found in our previous publication (Mirabnahrazam et al. 2022). Subjects from the stable(s)NC, 

unstable(u)NC, progressive(p)NC, stable(s)MCI, and progressive(p)MCI stratified subgroups were 

included in this study. These stratified subgroups were divided into two categories based on whether they 

received a clinical diagnosis of DAT in a future time point or not. The group descriptions are as follows: 

1. Non-progressive (right-censored): This group includes subjects from the sNC, uNC, and sMCI 

stratified groups who did not receive a clinical diagnosis of DAT throughout the study period.  

2. Progressive (uncensored): This group includes subjects from the pNC and pMCI groups who 

received a DAT diagnosis after their initial visit during the study window.  

The predict labels for each subject in the study include: a) an event indicator of 0 or 1 indicating 

whether the subject was progressive (1) or non-progressive (0), and b) a duration indicating the time 

between the first visit and the time when the DAT diagnosis was confirmed for progressive subjects, and 

the time between the first and last visit for non-progressive subjects.  

2.3 Feature pre-processing for the Multi-modal input data  

We used all of the available features from the Cognitive tests (10 features), Demographic (4 

features), and CSF (7 features) categories in the ADNI database, and created a new set of 21 features 

called CDC. Then, in order to perform a fair comparison between feature sets, we selected the top 21 

most important features from MRI and genetic data modalities. More details of the feature selection 

process were described in detail in our previous work (Mirabnahrazam et al. 2022). All 63 features chosen 

for this study are listed in Table A.1, available in Section A of the Supplementary Material. 



   
 

 

Table 1. Demographic information and progression group division for subjects included in 

the study. Each subject is assigned a membership in the form of `prefix{Group}', 

where ̀ Group' is the clinical diagnosis at baseline, and ̀ prefix' signals future clinical 

diagnoses. The stratified subgroups were divided into two groups based on 

whether or not they received a clinical diagnosis of DAT in a future time point. The 

non-progressive group includes subjects from the sNC, uNC, and sMCI stratified 

groups who did not receive a clinical diagnosis of DAT during the study period, and 

the progressive group includes subjects from the pNC and pMCI groups who 

received a DAT diagnosis after their initial visit during the study window. 

Dementia trajectory Group name Clinical 

diagnosis 

at baseline 

Clinical progression Subjects 

[M:F] 

Age c [Years] CSF a,c [t-

tau/Aβ1-42] 

Non-progressive b sNC: stable NC NC a NC d → NC 58:51 75.79 (4.93) 0.34 (0.23) 

Non-progressive uNC: unstable NC NC NC → MCI 14:8 76.57 (3.70) 0.39 (0.19) 

Non-progressive sMCI: stable MCI MCI a MCI d → MCI 65:36 74.70 (7.35) 0.67 (0.52) 

Progressive  b pNC: progressive NC NC NC → MCI → DAT 6:8 76.49 (4.33) 0.75 (0.42) 

Progressive pMCI: progressive MCI MCI MCI → DAT 99:56 73.85 (6.85) 0.82 (0.45) 

a NC: normal control, MCI: mild cognitive impairment, DAT: dementia of Alzheimer’s type, CSF: cerebrospinal fluid, t-tau: total tau, 

Aβ1-42: beta amyloid 1-42, 
b Non-progressive: right-censored, subjects who did not receive a DAT diagnosis within the study window, Progressive: 

uncensored, subjects who received a diagnosis of DAT during the study window, 
c The mean (standard deviation) age and CSF measure values within each group are given; CSF measures were only available for 

a subset of subjects in each of the groups: sNC (57), uNC (17), sMCI (55), pNC (8), pMCI (88), 
d Clinical diagnosis at baseline is shown in bold under the ”Clinical progression” column.



   
 

   
 

To avoid removing subjects who were missing some information from the 63 features 

chosen above, the missing values for each feature were replaced by an out-of-range value as 

suggested by Twala & al. (Twala, Jones, and Hand 2008). Section B in Supplementary Material 

includes a comparison between this method and two other methods for handling missing values. 

Feature scaling has been performed on the data as a pre-processing step to ensure a consistent 

set of feature ranges (Ma et al. 2019). Standardization (�́� =  
𝑥−�̅�

𝜎
) was performed on features with 

either categorical or continuous data types, while binary features remained unchanged. �́� is the 

standardized feature vector, 𝑥 is the original feature vector, �̅� is the mean of that feature vector, 

and 𝜎 is its standard deviation. Section C in Supplementary Material compares the performance 

of our pre-processing method with two other methods. 

3 Methods 

3.1 DeepSurv survival model 

Survival analysis, or time-to-event analysis, is used to estimate the time until an individual 

or a group of individuals experience an event of interest. It is common in time-to-event data that 

some individuals are not followed up to their event time for a variety of reasons, including leaving 

the study or experiencing another event that prevents them from experiencing the event of 

interest, resulting in censored times rather than event times. While many analyses ignore these 

observations, one of the most important contributions of survival analysis methods is to account 

for them. 

Survival analysis has received substantial recent attention in the machine learning 

literature. The application of neural networks to survival analysis was first introduced by (Faraggi 

and Simon 1995), where they extended the classical Cox proportional hazard model (Cox 1972) 

by using a one hidden layer multilayer perceptron (MLP) to learn the relationship of the covariates 

to the hazard function. Recent advances in deep learning have enabled researchers to develop 

several cutting-edge deep learning based survival analysis models that can overcome the 

constraints of the traditional models such as the linearity assumption between the covariates and 



   
 

   
 

the hazard function. The models have been shown to be more successful at accurately 

estimating the underlying relationship between covariates and the event of interest in complex 

problems than the traditional models. 

We have utilized a deep learning based survival analysis model called DeepSurv  

(Katzman et al. 2018) which extends the classic Cox proportional hazard model to predict, 

analyze, and compare the time-to-conversion to DAT. Cox regression model (Cox 1972) 

provides a semi-parametric specification of the hazard rate: 

ℎ(𝑡|𝑥) = ℎ0(𝑡)𝑒𝑥𝑝[𝑔(𝑥)],      𝑔(𝑥) =  𝛽𝑇𝑥, (1) 

where ℎ0(𝑡) is a non-parametric baseline hazard, and exp[𝑔(𝑥)] is the hazard ratio or risk score. 

Here, 𝑥 is a covariate vector or a vector of features included in the study and 𝛽 is a parameter 

vector. The hazard ratio is the parametric part of the model which consists of a linear predictor 

𝑔(𝑥) =  𝛽𝑇𝑥. The Cox partial likelihood, with Breslow’s method for handling tied event times 

(Breslow 1972), is given by: 

𝐿𝑐𝑜𝑥 =  ∏ (
𝑒𝑥𝑝 [𝑔(𝑥𝑖)]

∑  𝑒𝑥𝑝[ 𝑔(𝑥𝑗) ] 𝑗𝜖𝑅𝑖

)
𝐷𝑖

𝑖 ,  (2) 

and the negative partial log-likelihood can then be used as a loss function:  

𝑙𝑜𝑠𝑠 =  ∑  𝐷𝑖 𝑙𝑜𝑔 ( ∑  𝑒𝑥𝑝[ 𝑔(𝑥𝑗)  −  𝑔(𝑥𝑖) ] 𝑗𝜖𝑅𝑖
)𝑖 , (3) 

where 𝑖 denotes an individual, 𝐷𝑖 is an indicator labelling the observed event time as an 

progressive (uncensored; 𝐷𝑖 = 1) or non-progressive (right-censored; 𝐷𝑖 = 0)  observation, and 

𝑅𝑖 is the set of all individuals at risk at time  𝑇𝑖 (not censored and have not experienced the event 

before time 𝑇𝑖). The negative partial log-likelihood is usually minimized using Newton-Raphson’s 

method.  

To construct a non-linear version of the Cox model, the linear predictor 𝑔(𝑥) =  𝛽𝑇𝑥 in 

the relative risk function above is replaced by a 𝑔(𝑥) parametrized by a neural network. The 

predictions are obtained by estimating the survival function, �̂�(𝑡|𝑥) = exp[−�̂�(𝑡|𝑥)], where �̂�(𝑡|𝑥) 

is the cumulative hazard function, which is commonly used for specifying different survival 

models, and is defined as: 



   
 

   
 

𝐻(𝑡|𝑥) =  ∫ ℎ(𝑠|𝑥) 𝑑𝑠 = 
𝑡

0 ∫ ℎ0(𝑠) 𝑒𝑥𝑝[𝑔(𝑥)] 𝑑𝑠,
𝑡

0
 (4) 

and in practice can be estimated by: 

�̂�(𝑡|𝑥) =  ∑ ∆𝐻0̂(𝑇𝑖) 𝑒𝑥𝑝 [𝑔(𝑥)]𝑇𝑖≤𝑡 ,  (5) 

where ∆𝐻0̂(𝑇𝑖) is an increment of the Breslow estimate (Breslow 1972): 

∆𝐻0̂(𝑇𝑖) =  
𝐷𝑖

 ∑  𝑒𝑥𝑝[ �̂�(𝑥𝑗) ] 𝑗𝜖𝑅𝑖

,  (6) 

and 𝑔(𝑥) is the estimate of 𝑔(𝑥) obtained from the neural network.  

In order to evaluate the performance of the above model, we have trained our data using 

the Cox model (Cox 1972) as benchmark, as well as four other best-performing deep learning-

based models in the literature and reported the results in section D of Supplementary Material. 

3.2 Evaluation metrics 

3.2.1 Concordance index 

Concordance index or C-index (Harrell et al. 1982) is arguably the most widely used 

metric for global assessment of prognostic models in survival analysis. The C-index estimates 

the likelihood that the predicted survival times of a random pair of individuals will have the same 

ordering as their true survival times among all pairs of subjects that can be ordered. The C-index 

attempts to describe the performance of a model based on the assumption that patients who 

lived longer should be assigned a lower risk than patients who lived shorter. A "good" model, 

according to the C-index (C=1), is the one that always assigns higher scores to the subjects who 

have experienced the earlier events.  

Figure 1 illustrates the graphical representation of C-index computation in the presence 

of censored data inspired by a graphical representation proposed by Steck et al. (2008). When 

calculating the C-index between two data points, we can determine the order of events if both 

data points are progressive (uncensored). If one of the data points is non-progressive (right-

censored), concordance can be calculated only if the censoring occurs after the event for the 



   
 

   
 

progressive (uncensored) data point. Concordance cannot be evaluated for a pair if both data 

points are non-progressive (right-censored) or if both events occur at the same time.  

 

Figure 1. Graphical representation of C-index computation. Each circle indicates the 

predicted survival time for a data point. The red circles represent the 

progressive (uncensored) data points and the blue circles represent the 

non-progressive (right-censored) data points. The figure illustrates the 

pairs of data points for which an order of events can be established.  

The C-index is computed at the initial time of observation and only depends on the 

ordering of the predictions, hence it cannot reflect the possible change in the risk over time. 

Therefore, here we use the time-dependent concordance index (Ctd-index) (Antolini, Boracchi, 

and Biganzoli 2005), which estimates the probability that observations 𝑖 and 𝑗 are concordant 

provided that they are comparable: 

𝐶𝑡𝑑 = 𝑃{ �̂�(𝑇𝑖 | 𝑥𝑖) < �̂�(𝑇𝑗 | 𝑥𝑗) | 𝑇𝑖 < 𝑇𝑗,  𝐷𝑖 = 1}. (7) 

3.2.2 Brier score 

The Brier score (BS) (Brier 1950) is used to evaluate the accuracy of a predicted survival 

function; it represents the average squared distances between the observed survival status, 𝑦𝑖  ∈

 {0,1}, and the predicted survival probability, 𝑝�̂� and is always a number between 0 and 1, with 0 

being the best possible value. 

𝐵𝑆 =  
1

𝑁
 ∑ (𝑦𝑖 −  𝑝�̂�)

2,𝑖   (8) 



   
 

   
 

where 𝑁 is the number of observations. To get binary outcomes from time-to-event data, we 

choose a fixed time 𝑡 and label data according to whether or not an individual’s event time is 

shorter or longer than 𝑡. To account for censored data, the Brier score have been generalized 

(Graf et al. 1999) by re-weighting the scores by the inverse censoring distribution, 

𝐵𝑆(𝑡) =  1
𝑁

 ∑ [
�̂�(𝑡| 𝑥𝑖)

2
 𝟙{𝑇𝑖≤𝑡,𝐷𝑖=1}

�̂�(𝑇𝑖)
+

(1− �̂�(𝑡| 𝑥𝑖))
2

 𝟙{𝑇𝑖>𝑡}

�̂�(𝑡)
]𝑁

𝑖=1  . (9) 

Here N is the number of observations, Ĝ(Ti) and Ĝ(t) are the Kaplan-Meier (Kaplan and Meier 

1958) estimates of censoring distribution at times Ti and t, and it is assumed that the censoring 

times and survival times are independent. The Brier score can be extended from a single duration 

𝑡 to an interval by computing the integrated Brier score (IBS): 

𝐼𝐵𝑆 =  
1

𝑡2−𝑡1
 ∫ 𝐵𝑆(𝑠) 𝑑𝑠.

𝑡2

𝑡1
 (10) 

3.3 Network Architecture 

The base neural network used to train the data is a multilayer perceptron (MLP) with the 

same number of nodes in each hidden layer, rectified linear unit (ReLU) activation function, and 

batch normalization between layers. For regularization, we used dropout (Srivastava et al. 2014), 

normalized decoupled weight decay (Loshchilov and Hutter 2017) and early stopping. We utilized 

the cyclic AdamWR (Loshchilov and Hutter 2017) optimizer with an initial cycle length of one 

epoch. The optimizer multiplies the learning rate with 0.8 and doubles cycle length after every 

cycle. The initial learning rate was found using the methods proposed by Smith (2017). The 

output of the network is a single node that estimates the hazard rate in the Cox model (equation 

(1)). We then obtain the predictions by estimating the survival function, �̂�(𝑡|𝑥) = exp[−�̂�(𝑡|𝑥)], 

from the estimated cumulative hazard by following equations (4 - 6). 

We performed hyperparameter search using the repeated random sub-sampling 

approach, also known as the Monte Carlo cross-validation (Xu and Liang 2001), with 100 splits 

on our data including all 63 features. In each split, 80% of the subjects were chosen at random 

for training, with the remaining 20% reserved for validation. The data was stratified so that each 

time, 80% of the subjects from the sNC, uNC, pNC, sMCI, and pMCI groups were included in 



   
 

   
 

the training set. This method ensures that the network is exposed to a representative subset of 

data in each split, resulting in a more accurate learning experience. We ran hyperparameter 

search on the parameters listed in Table 2 and chose the model with the highest validation set 

score calculated from the loss function in equation (3). The hyperparameter values highlighted 

in bold in Table 2 were used as a fixed set of parameters to train the data using different feature 

combinations across all experiments. Figure 2 illustrates our network architecture. 

Table 2. Hyperparameter search space for model optimization. 

Hyperparameter Values 

Hidden layers {1, 2, 3a, 4, 5, 6} 

Nodes per layer {10, 25, 32, 50, 64, 75, 100} 

Dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} 

Weight decay {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5} 

Batch size {16, 32, 64, 128, 256, 512} 

a Hyperparameter values used as the fixed parameters in the network architecture are highlighted in bold. 

 

Figure 2. Network architecture used as the base model. Input data includes a 

subject's feature vector (x), including MRI, genetic, or CDC features and the 

network's output is the estimated hazard rate for that subject. The survival 

estimate for a subject is calculated from the estimated hazard rate using 

�̂�(𝒕|𝒙) = 𝐞𝐱𝐩[−�̂�(𝒕|𝒙)] where �̂�(𝒕|𝒙) is the cumulative hazard rate. 



   
 

   
 

3.4 Experiments 

3.4.1 Multi-modal survival comparison 

Using Monte Carlo cross-validation (Xu and Liang 2001) with 10 splits, each time we 

randomly selected 80% of the subjects for training and 20% of the subjects for testing. The train-

test split has been performed in a stratified fashion such that each time 80% of the subjects in 

each of the sNC, uNC, pNC, sMCI, and pMCI were included in the training set. In each split, 20% 

of the training subjects were randomly selected for internal validation. The number of subjects 

included in each of the 10 training, validation, and testing sets is shown in Table 3. 

Table 3. Number of subjects included in the training, testing, and validation sets.  

Groups Training set Validation set Testing set Total 

sNC 70 17 22 109 

uNC 14 4 4 22 

pNC 9 2 3 14 

sMCI 65 16 20 101 

pMCI 99 25 31 155 

Total 257 64 80 401 

 

Seven experiments were conducted using identical hyperparameters for the model using 

the following features:  

1.    Genetic data only (GEN; 21 features), 

2.    MRI data only (MRI; 21 features), 

3.    The combination of cognitive test data, demographic, and CSF measures (CDC; 21 

features), 

4.    Combined MRI and genetic data (GEN+MRI; 42 features), 

5.    Combined genetic and CDC data (GEN+CDC; 42 features), 

6.    Combine MRI and CDC data (MRI+CDC; 42 features), 

7.    All features combined (GEN+MRI+ CDC; 63 features). 



   
 

   
 

In each split, our method estimates the survival rate for each subject over a 10-year 

period. To evaluate and compare the performance of the model, we reported the average of 

time-dependent concordance index (Ctd-index) and the Integrated Brier score (IBS) over 10 

splits.  

3.4.2 Feature importance analysis 

To assess the significance of the features used in the previous step, we used a method 

called Permutation Importance (Breiman 2001), which allows us to treat and inspect fitted 

machine learning models as black-box estimators. The idea behind the technique is to compute 

the feature importance by measuring how the evaluation score decreases when a feature is not 

available. This is accomplished by shuffling the values in the original feature to generate random 

noise with the same distribution as the original feature. Because this procedure breaks the link 

between the feature and the target, the drop in the model score reflects how much the model is 

dependent on the feature. 

The importance of each feature 𝑗 (a column of the dataset) is defined as: 

𝑖𝑗 = 𝑠 −  
1

𝐾
 ∑ 𝑠𝑘,𝑗

𝐾
𝑘=1  (11) 

where s is the reference score of the trained model on the unshuffled data, 𝐾 is the number of 

times column 𝑗 was shuffled, and 𝑠𝑘,𝑗 is the calculated score on the data including the shuffled 

column 𝑗 at iteration 𝑘. Column 𝑗 is randomly shuffled 𝐾 times, and the resulting scores are 

averaged; the difference between the reference score and the averaged scores from the shuffled 

data is then defined as the importance of feature 𝑗. Positive feature importance (𝑖𝑗  > 0) denotes 

a decrease in the score in the absence of feature 𝑗, and thus the importance of feature 𝑗, while 

negative feature importance (𝑖𝑗  < 0) denotes an increase in the score in the absence of the 

feature and the potential negative effect the feature can have on the performance of the model. 

 We computed feature importance on the GEN, MRI, CDC, and GEN+MRI+CDC feature 

sets to investigate the significance of each feature type alone and in combination. Ctd-index have 



   
 

   
 

been used as the evaluating score, and each of the features were shuffled 10 times. The scores 

were calculated on the trained models from step 1 and using the data in the testing sets.  

Using the results of feature importance above, we removed features with negative feature 

importance (𝑖𝑗  < 0) from each of the MRI, GEN, CDC, and MRI+GEN+CDC feature sets and 

retained the models following the same settings as before to investigate whether including those 

features reduces the overall performance of the model.  

3.4.3 Progressive vs. non-progressive survival analysis 

To compute the survival estimates over time, in each split, we used our trained model to 

estimate the survival curve for 80 subjects in the testing set. Next, we averaged the survival 

curves of subjects who were in more than one testing set to create the final set of survival 

estimates across 10 splits. Some of the subjects were never included in the testing set. Table 6 

shows the number of subjects who were included in the testing set at least once across 10 splits. 

A good survival model should predict a high survival rate for non-progressive subjects, 

whereas the progressive subjects should be associated with a low survival rate. To validate the 

above statement, we used the survival estimates of the 206 non-progressive and 150 

progressive subjects obtained using all available features (MRI+GEN+CDC), and examined the 

survival trend of subjects in these two groups. We investigated the survival trend over 1, 2, 5, 

and 10 year durations, starting from the initial clinical visit for each subject. 

Table 4. Number of subjects included in the testing set at least one time in 10 splits. 

Our trained model was used to estimate a survival curve for these subjects. 

Stratified group sNC uNC sMCI  pNC pMCI 

# subjects (testing set/total) 96/109 20/22 90/101  13/14 137/155 

Group Non-progressive  progressive 

# sum (testing set/total) 206/232  150/169 



   
 

   
 

4 Results 

4.1 Multi-modal survival comparison  

Figure 3 illustrates performance comparison of the seven different feature sets used to 

train our model. The top figure represents the Ctd-index performance results, where higher scores 

indicate superior performance, and the bottom figure shows the IBS results, where lower scores 

are preferable. When comparing the results obtained from a single modality (GEN, MRI, and 

CDC), CDC (green) showed to produce a significantly better performance using both Ctd-index 

(0.822) and IBS (0.111) compared to GEN (Ctd-index p-value: 2 × 10−7; IBS p-value: 1.38 ×

10−5) and MRI (Ctd-index p-value: 2.18 × 10−6; IBS p-value: 2.45 × 10−5). Combining MRI and 

GEN features (red) improved model performance over using either GEN (blue) or MRI (orange) 

features alone using both metrics (Ctd-index: 0.76 vs. 0.589 and 0.727; IBS: 0.148 vs. 0.206 and 

0.16). This improvement was statistically significant using both metrics when compared to GEN 

(Ctd-index p-value: 3.57 × 10−5; IBS p-value: 0.0017), and using Ctd-index when compared to 

MRI (p-value: 0.0334).  

Adding CDC to any feature set (GEN+CDC (purple), MRI+CDC (brown), and 

MRI+GEN+CDC (pink)) improved performance over using that feature set without CDC (GEN 

(blue), MRI (orange), MRI+GEN (red)). However, when compared to using CDC features alone, 

combining CDC with other features did not always result in an improved performance. The 

combination of MRI and CDC features (brown) had the best overall performance, closely followed 

by the results obtained using only CDC features (Ctd-index: 0.831 (MRI+CDC) and 0.822 (CDC); 

IBS: 0.105 (MRI+CDC) and 0.111 (CDC)).  



   
 

   
 

 

Figure 3. Performance comparison between different feature sets using time the 

dependant concordance index (Top row), and Integrated Brier score 

(Bottom row). Each bar represents the mean C-index over ten splits, with 

the standard deviation indicated by a vertical error bar. The mean value has 

been printed above each bar. The name of each feature set (number of 

features) has been shown on x asis.  



   
 

   
 

4.2 Feature Importance analysis 

Figure 4 shows the results of feature importance analysis for models train using GEN, 

MRI and CDC feature sets. The top graph depicts the feature importance rates for GEN features. 

14 of the 21 features in the features set have been shown to have a positive effect on 

performance. The most important feature in this feature set is the well-known AD biomarker 

APOEε4, which is followed by rs2883782 on chromosome 2 and rs10510985, rs7627954, and 

rs6773506 on chromosome 3. The middle graph in Figure 4 shows feature importance results 

for models trained with MRI features. 15 of the 21 features used were shown to have a positive 

effect on the performance. The Hippocampus region on the left hemisphere is the most important 

feature in this feature set and its importance rate is at least twice bigger than the importance rate 

for all other features. Other important features include Amygdala (left hemisphere), 

Hippocampus (right hemisphere), Inferior parietal lobule (right hemisphere), and Supramarginal 

gyrus (left hemisphere). The feature importance results for models trained with CDC features 

are shown in the bottom graph of Figure 4. The majority of the features in this features set were 

found to be important, with only 2 showing negative importance rates. 8 of the top 10 most 

important features were drawn from cognitive tests, with the Delayed recall variable from the 

Logical memory test (LDEL-Total) being the most important. Sex and education were also among 

the top 10.  

The result of feature importance analysis on models trained with all available features 

(GEN+MRI+CDC) is shown in Figure 5. We found that 27 of the 63 features, including 6 GEN 

features, 9 MRI features, and 12 CDC features, were shown to have a positive effect. The top 

five most important features were from cognitive test features in the CDC feature modality, with 

the CDRSB (Clinical Dementia Rating Scale) being the most important, closely followed by 

LDEL-Total. The Hippocampus on the left hemisphere is the most important MRI feature, ranking 

among the top ten in this feature set. 



   
 

   
 

 

Figure 4. Feature importance results for GEN (top), MRI (middle), and CDC (bottom) 

feature sets. Each bar represents the mean score over ten splits, with the 

standard deviation indicated by a vertical error bar. X axis labels are color 

coded for ease of view. Colors on the top figure (GEN) indicate different 

chromosomes. On the middle figure (MRI), red shows right (R) and blue 

shows left (L) hemisphere of the brain. CSF, cognitive test (COG), and 

demographic (DEM) data are color coded on the bottom figure. 



   
 

   
 

 

Figure 5. Feature importance results for the GEN+MRI+CDC feature set. Each bar 

represents the mean score over ten splits, with the standard deviation 

shown as a horizontal error bar. Data modalities have been color coded on 

y axis for ease of view (GEN, MRI, CDC). GEN labels indicate SNP 

(Chromosome number), MRI labels indicate Hemisphere-ROI name, and 

CDC labels indicate feature (data modality). DEM: demographic data; COG: 

cognitive test data. 



   
 

   
 

Table 5. Performance comparison with Ctd-index as evaluation method before and 

after removing features with negative importance using the Permutation 

Importance method. (the larger the better) 

Feature set                   

 (# step 1 / # step 2)a 

Ctd-index using all features 

(step 1 results) 

Ctd-index using features with 𝒊𝒋 >

𝟎 (step 2 results) 

GEN (21/14) 0.589 ± 0.049* 0.628 ± 0.028 b 

MRI (21/15) 0.727 ± 0.025 0.744 ± 0.022 

CDC (21/19) 0.822 ± 0.022 0.826 ± 0.027 

GEN+MRI+CDC (63/27) 0.798 ± 0.026* 0.831 ± 0.017 

a (number of features in the main feature set / number of features with positive feature importance score), 

b mean ± standard deviation over 10 splits, best performance in each row has been highlighted in bold. 

*  paired t-test with p < 0.05  

Table 6. Performance comparison with IBS as evaluation method before and after 

removing features with negative importance using the Permutation 

Importance method. (the smaller the better) 

Feature set                      

(# step 1 / # step 2)a 

IBS using all features         

(step 1 results) 

IBS using features with 𝒊𝒋 > 𝟎 

(step 2 results) 

GEN (21/14) 0.206 ± 0.026 0.194 ± 0.020 b 

MRI (21/15) 0.160 ± 0.013 0.157 ± 0.016 

CDC (21/19) 0.111 ± 0.019 0.116 ± 0.021 

GEN+MRI+CDC (63/27) 0.122 ± 0.016 0.109 ± 0.014 

a (number of features in the main feature set / number of features with positive feature importance score), 

b mean ± standard deviation over 10 splits,  

best performance in each row has been highlighted in bold. 

Table 5 shows the impact of removing features with a negative feature importance rate 

from each feature set on the model’s performance using Ctd-index as the evaluation metric. As 

can be seen, removing features with negative importance rate has improved the performance in 



   
 

   
 

all cases, and this improvement was statistically significant (p < 0.05) for GEN and 

GEN+MRI+CDC feature sets. There were only two features in the CDC feature set with a 

negative importance rate, and removing them resulted in a slight improvement in performance. 

Table 6 displays a similar information, but this time using IBS as the evaluation metric. 

4.3 Progressive vs. non-progressive survival analysis 

Figure 6 displays the final survival probability across 10 splits for subjects in the 

progressive and non-progressive groups at the end of various time durations. A high survival 

probability indicates a high likelihood of NOT developing DAT or a low likelihood of developing 

DAT, whereas a low survival probability indicates a high likelihood of developing DAT after a 

certain time period. 

One year after the initial visit (top left graph), approximately 74% of the non-progressive 

subjects had above 90% chance of survival while only 23% of the progressive subjects had this 

chance. Over a two-year period (top left graph), more than 85% of non-progressive subjects had 

a chance of survival greater than 50% (top 5 bars combined), where more than 58% of them had 

over 90% chance of survival. However, only half of the progressive subjects showed a survival 

chance of more that 50% with only 13% having over 90% survival probability.  

The survival probability 5 years after the initial clinical visit is shown in the bottom left 

graph. As can be seen, approximately 40% of non-progressive subjects still had a 90% chance 

of survival, while less than 10% of progressive subjects had this chance. The proportion of 

progressive subjects with the lowest survival chance (< 10%) was more than three times higher 

(34%) than the proportion of non-progressive subjects (10%) with the same survival probability. 

Ten years after the initial visit (bottom right graph), more than half of the non-progressive subjects 

still showed greater than 50% chance (bottom 5 bars combined) of survival, while about 27% 

showed a very low chance (< 10%) of survival. In the progressive group, 78% of the subjects 

had a very low chance of survival (< 10%), and only 8% had a chance of survival greater than 

50%. 



   
 

   
 

 

Figure 6. Estimated survival probability for progressive vs. non-progressive subjects 

over various time periods using the GEN+MRI+CDC feature set. The survival 

probability is divided into ten equal batches and each bar represents the 

proportion of subjects in each batch for both groups. The legend displays 

the total number of subjects in each group. The cyan bars represent data 

for non-progressive subjects, and the red bars show data for progressive 

subjects. 

The data related to the true time-to-conversion to Alzheimer's disease (event time) is 

available for progressive subjects, and can be compared to the predicted time-to-conversion. 



   
 

   
 

Figure 7 shows a histogram of the differences between the predicted and true event times for 

progressive subjects (150 subjects) using the GEN+MRI+CDC feature set. Here, the predicted 

time is defined as the time when a subject's survival probability reaches 50%. If a subject's 

survival likelihood does not drop below 50% during the 10-year timeframe, it means the model 

regarded the subject to be at low risk of developing DAT and thus a non-converter based on the 

input information provided; otherwise, the subject is considered a converter. To obtain the time 

differences for all progressive subjects, we set the time-to-conversion as 20 years from the initial 

visit for those subjects whose survival probability did not reach 50% at the end of the 10-year 

period.  

 

Figure 7. Histogram of the difference between predicted and true event times for 150 

progressive subjects using the GEN+MRI+CDC feature set. The predicted 

event  time is the time when a subject's survival probability reaches 50%. If 

a subject's survival probability does not reach 50% by the end of the 10-

year period, the subjects is considered a DAT non-converter (shown in dark 

purple). The percentage of subjects with a specific time difference is 

represented by a number printed above each bar.  



   
 

   
 

In Figure 7, each bar represents the number of subjects with a specific range of time 

difference. The bar at zero, for example, represents the number of subjects whose 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 –  𝑡𝑟𝑢𝑒 𝑒𝑣𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 was between -0.5 and 0.5 years, and the bar at 2 shows 

the number of subjects with 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 –  𝑡𝑟𝑢𝑒 𝑒𝑣𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 ∈ (1.5, 2.5). The true and 

predicted event times were very close to each other for 40 subjects (26.7%), with a difference of 

close to zero. In addition, more than half of the progressive subjects (80 out of 150, or 53.4%) 

had a time difference of less than 1.5 years, as shown by the three bars at -1, 0 and 1. The 

predicted event time was earlier than the actual event time for 37 subjects (24.7%; bars with 

negative time difference), indicating that our model detected the risk of developing DAT for those 

subjects prior to the actual event, which can be used as a biomarker in clinical settings. Despite 

the difference between the true and predicted event times, 92% of the subjects were correctly 

predicted as converters and only 8% (12 outlier subjects) of them were predicted as non-

converters based on the survival data.  

5 Discussion 

5.1 Analyzing feature importance results 

The order of feature importance rates shown in Figure 5 closely reflects the results of 

performance comparison using different feature sets (shown in Figure 3). Having 7 of the top 10 

most important features from the CDC modality demonstrates the importance of these features 

on performance results and explains why adding CDC features to other feature sets results in 

an improved performance. Based on the results shown in Figure 5, we can rank the contribution 

of single modality feature sets as follows: GEN features contribute the least, followed by MRI 

features and CDC features, with CDC features contributing the most to the model performance. 

The same pattern can be seen in the performance comparison results between GEN (blue), MRI 

(orange), and CDC (green) feature sets displayed in Figure 3.  

Cognitive test features (COG) were found to play an important role in our analysis. Our 

study included a total of 10 COG features; feature importance results using the CDC feature set 



   
 

   
 

declared all ten to be have a positive effect on the outcome (Figure 4, bottom graph), and feature 

importance results using all features declared seven to be important with an importance rate 

higher than all other features (Figure 5). CSF and genetic factors, on the other hand, were 

discovered to be less useful. We had 7 CSF and 21 GEN features in total. 14 of 21 GEN features 

(Figure 4, top graph) and 5 of 7 CSF features (Figure 4, bottom graph) were found to be important 

in single modality feature sets. The only two features with negative feature importance for CDC 

came from the CSF measures. Furthermore, the feature importance results using all features 

(Figure 5) only identified 6 GEN and 2 CSF features as significant. Our findings are important 

since it is much easier, cheaper, and less time consuming to perform cognitive tests than it is to 

acquire other data modalities, and our experiments demonstrate that cognitive tests are more 

promising, and can produce results that outperform those produced using other features. 

5.2 Evaluation of time-to-conversion estimates and their 

benefits 

Using survival analysis techniques to estimate time-to-conversion to Alzheimer’s disease 

has the following advantages over other methods such as regression. First, there is no need to 

exclude subjects who did not develop DAT during the study period when using survival analysis 

which allows us to benefit from data collected from all study participants and ensure we do not 

accidentally bias the study by excluding these subjects. Second, survival analysis estimates the 

survival chance over time, giving us access to the survival probability at multiple time points and 

the overall trend of survival for each patient with respect to their input phenotype, genotype, and 

lifestyle information. 

To evaluate the time-to-conversion estimates and to assess their applicability in a clinical 

setting, we randomly selected four subjects from each of the non-progressive and progressive 

groups and displayed their predicted survival times along with the true censoring or event times 

in Figure 8. Figures A-D (left side) belong to the non-progressive group, and their censoring time 

(green line) has been displayed along with the estimated survival probability, whereas figures E-



   
 

   
 

H (right side) belong to the progressive group, and their event time (red line) has been displayed 

along with the estimated survival probability. 

 

Figure 8. Comparison between the predicted survival estimates vs. actual censoring 

times (left) and event times (right) for 8 random subjects. The predicted 

event time is defined as the time when a subject's survival probability 

reaches 0.5. The horizontal dotted line represents a survival probability of 

0.5, and the intersection of this line and the survival estimate curve (shown 

with a filled circle) represents the predicted event time for the subjects.  



   
 

   
 

The uNC subject in A and the sNC subjects in C were censored around 10 years after 

their initial visit. At the end of the time window, both subjects still showed a very high survival 

probability, indicating they are at low risk of developing DAT. The sMCI subject in B was 

censored 6 months after the initial visit and had a survival probability of around 60% at the time 

of censorship. After 4 years, this subject's survival chance was dropped to 0%, indicating that 

the subject is likely to develop DAT in the future. The sNC subject in D was censored immediately 

after the initial visit and had a survival probability of 100% at the time of censoring. The subject's 

chance of survival decreased over time, reaching 20% at the end of the time window, indicating 

that they may develop DAT 7 to 10 years after their initial visit. 

The pMCI subjects in graphs E, G, and H were all diagnosed with Alzheimer's disease 

around the same time, between one to two years after their initial visit. All three sMCI subjects 

had a similar survival curve, which could be translated into a similar disease severity. The pNC 

subject in F developed DAT symptoms 6 years after the initial visit. Despite having a higher 

chance of survival than other progressive subjects at event time, this subject's survival probability 

drops from 100% to 20% over a 10-year period, placing the subject in the high-risk category. 

It is important to note that for all patients, only the information obtained at the initial clinical visit 

(time=0) was used as covariates in our model. For example, for pNC subjects, the model was 

only exposed to information when those subjects were completely healthy. This is clinically 

relevant because practitioners only have access to the information gathered at the current time 

point when at-risk patients visit them for the first time. Being able to accurately estimate the 

survival chance over time using only baseline information is extremely valuable because it 

provides practitioners with deep insight and enough time to plan appropriate care for each patient 

based on their future survival probability. Furthermore, while there is no cure for Alzheimer's 

disease at this time, many research facilities around the world are working around the clock to 

find a solution to permanently combat the disease. Accurate time-to-conversion estimates for at-

risk patients can provide novel and potentially critical information for drug trials and the 



   
 

   
 

development of preventative measures. It can also aid in the selection of the appropriate cohort 

of patients for clinical trials, which can lead to a more promising outcome. 

5.3 Evaluate the predicted time-to-conversion for pNC vs. pMCI 

subjects using different feature sets 

The progressive group includes subjects from the pNC and pMCI stratified groups. The 

pNC subjects are those who were healthy at their initial clinical visit but developed DAT at a later 

point in time. As a result, all of the MRI, CSF, and cognitive test data gathered during the initial 

visit correlates with their healthy condition at the time. Genetic data, on the other hand, remains 

consistent over time and is thus the only factor that may point to these subjects' potential risk of 

developing Alzheimer's disease. The pMCI subjects are those who had MCI at their initial clinical 

visit and developed DAT at a future timepoint. In addition to genetic data, MRI, CSF, and 

cognitive test data may provide useful information about the disease stage in these subjects. 

Figure 9 shows the difference between the predicted and true event times for subjects in 

the pNC (left; 13 subjects) and pMCI (right; 137 subjects) stratified groups using single modality 

(GEN, MRI, and CDC) feature sets as well as the combined data modality (GEN+MRI+CDC) 

feature set. As expected, for pNC subjects, using GEN features (A, left side) resulted in the most 

accurate prediction for time-to-conversion in comparison to using other feature sets. More than 

half of the pNC subjects (53.9%) had a time difference of less than 1.5 years. There were no 

outliers when GEN features were used, and all 13 subjects were correctly predicted to be DAT 

converters. Using MRI features (B, left side), 6 pNC subjects (46.2%) were correctly predicted 

as converters, while the remaining subjects were predicted as non-converters. Using CDC 

features (C, left side), only 1 pNC subject was correctly predicted as a converter, while using 

combined features (D, left side), 4 subjects were predicted as converters. Overall, GEN features 

were found to be the most helpful for in time-to-conversion prediction for pNC subjects, while 

CDC features were found to be the least helpful.   

 



   
 

   
 

 

Figure 9. Histogram of the difference between the predicted and true event times for 

pNC (13 subjects, left) and pMCI (137 subjects, right) groups using A) GEN, 

B) MRI, C) CDC, and D) GEN+MRI+CDC feature sets. The predicted event 

time is the time a subject's survival probability reaches 50%. If a subject's 

survival probability does not reach 50% by the end of the 10-year period, 

the subjects is considered a DAT non-converter (shown in dark red and dark 

green for pNC and pMCI respectively). The percentage of subjects with a 

specific time difference is represented by a number printed above each bar. 

For pMCI subjects, using CDC features (C, right side) resulted in the best time-to-

conversion prediction among the single modality feature sets. 62.5% of pMCI subjects had a 

time difference of less than 1.5 years. There were only two outliers (1.4%), and 98.6% of the 



   
 

   
 

subjects were correctly classified as DAT converters. Using MRI features (B, right side) resulted 

in 11 outliers (8%), whereas using GEN features (A, right side) resulted in 4 outliers (2.9%). 

Although using GEN features resulted in fewer outliers, the time differences were more scattered 

when compared to using MRI features. Using combined features (D, right side) produced a 

histogram that was similar to the histogram produced by CDC features, indicating that CDC 

features are the most effective features in time-to-event prediction for pMCI subjects. Overall, all 

three data modalities were shown to be useful in time-to-event prediction for pMCI subjects, with 

CDC having the greatest contribution. 

We discovered that genetic data (GEN) has the potential to detect the risk of developing 

DAT in the future for currently normal subjects, while other modalities have a lower predictive 

power. This information can be used in a clinical setting to determine the order of data acquisition 

for patients at different stages of the disease. Cognitive tests are cheap and fast to acquire and 

can be gathered first to determine the state of a patient’s health. If a patient is determined to be 

healthy based on the results of cognitive tests at the initial clinical visit, genetic data can be 

obtained to determine the likelihood of developing DAT. Other data modalities, such as MRI and 

CSF data, can be collected during subsequent follow-up visits to closely study the patients' 

disease progression. 

5.4 Limitations 

Our study has some limitations: a) our results are limited by the sample size and 

characteristics of the group of subjects selected from the ADNI database. An approach to 

address this limitation would be to increase the sample size by using large-scale AD related 

databases such as UK Biobank database (https://www.ukbiobank.ac.uk), which can lead to 

a more robust model, b) the standard deviation appears to be high for all cases in Figures 4 

and 5, which may be an indication of the Permutation Importance method's high sensitivity to the 

input data. The Permutation Importance approach provides a highly compressed, global insight 

into the model's behaviour and, to the best of our knowledge, is the best model inspection 

technique for back-box estimators. However, the method is highly dependent on both the main 

https://www.ukbiobank.ac.uk/


   
 

   
 

feature effect and the interaction effects with other features, and thus estimates how important a 

feature is for a specific model by taking into account the interaction between features. As a result, 

when translating feature importance using this method, it's is important to consider that changing 

the feature set used to train the model can affect the order of importance for features. 
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Supplementary Material: Predicting Time-to-conversion for 

Dementia of Alzheimer’s Type using Multi-modal Deep 

Survival Analysis 

A  List of features included in the study  
 

Table A.1 includes a list of all 63 features included in this study and their details. These 

features include volume w-score measurements from 21 ROIs (MRI features), 21 genetic 

features including 3 APOE alleles and 18 SNPs, 4 demographic features, 10 features from the 

cognitive tests, and 7 CSF features. Cognitive tests, Demographic, and CSF features (21 

features) are called CDC in short. 

Table A.1. List of 63 features included in the study 

Feature name Feature 

category 

Data type Number of 

missing data 

Description 

Amygdala - Lefta MRIb Continuous  0 Subcortical region in the left hemisphere  

Amygdala - Righta MRI Continuous 0 Subcortical region in the right hemisphere  

Entorhinal - Left MRI Continuous 0 Cortical region in the left hemisphere 

Entorhinal - Right MRI Continuous 0 Cortical region in the right hemisphere 

Fusiform - Left MRI Continuous 0 Cortical region in the left hemisphere 

Fusiform - Right MRI Continuous 0 Cortical region in the right hemisphere 

Hippocampus - Left MRI Continuous 0 Subcortical region in the left hemisphere 

Hippocampus - Right MRI Continuous 0 Subcortical region in the right hemisphere 

Inferior-parietal - Left MRI Continuous 0 Cortical region in the left hemisphere 

Inferior-parietal - Right MRI Continuous 0 Cortical region in the right hemisphere 

Inferior-temporal - Left MRI Continuous 0 Cortical region in the left hemisphere 

Inferior-temporal - Right MRI Continuous 0 Cortical region in the right hemisphere 



   
 

   
 

Feature name Feature 

category 

Data type Number of 

missing data 

Description 

Inferior-lateral-ventricle - 

Left 

MRI Continuous 0 Inferior or temporal horn of the lateral 

ventricle in the left hemisphere 

Inferior-lateral-ventricle - 

Right 

MRI Continuous 0 Inferior or temporal horn of the lateral 

ventricle in the right hemisphere 

Middle-temporal - Left MRI Continuous 0 Cortical region in the left hemisphere 

Middle-temporal - Right MRI Continuous 0 Cortical region in the right hemisphere 

Parahippocampal - Left MRI Continuous 0 Cortical region in the left hemisphere 

Parahippocampal - Right MRI Continuous 0 Cortical region in the right hemisphere 

Precuneus - Left MRI Continuous 0 Cortical region in the left hemisphere 

Precuneus - Right MRI Continuous 0 Cortical region in the right hemisphere 

Supramarginal - Left MRI Continuous 0 Cortical region in the left hemisphere 

APOE-ε2  GENb Binary 0 SNP on chromosome 19 

Genec: APOE 

APOE-ε3 GEN Binary 0 SNP on chromosome 19 

Gene: APOE 

APOE-ε4 GEN Binary 0 SNP on chromosome 19 

Gene: APOE 

rs524410 GEN Categorical 0 SNP on chromosome 6 

Gene: LOC112267968 

rs746947 GEN Categorical 0 SNP on chromosome 3 

Gene: FRMD4B 

rs1010616 GEN Categorical 0 SNP on chromosome X 

Gene: ZDHHC15 

rs1864036 GEN Categorical 0 SNP on chromosome 5 

Gene: LOC105379004 

rs2085925 GEN Categorical 0 SNP on chromosome 8 

Gene: TRAPPC9 

rs2405940 GEN Categorical 0 SNP on chromosome X 

Gene: SHROOM2 



   
 

   
 

Feature name Feature 

category 

Data type Number of 

missing data 

Description 

rs2883782 GEN Categorical 0 SNP on chromosome 2 

Gene: MYO3B 

rs4953672 GEN Categorical 0 SNP on chromosome 2 

Gene: HAAO and MTA3 

rs5918417 GEN Categorical 0 SNP on chromosome X 

Gene: SYTL5 

rs5918419 GEN Categorical 0 SNP on chromosome X 

Gene: SYTL5 

rs6116375 GEN Categorical 0 SNP on chromosome 20 

Gene: PRNP 

rs6773506 GEN Categorical 0 SNP on chromosome 3 

Gene: FRMD4B 

rs7627954 GEN Categorical 0 SNP on chromosome 3 

Gene: TNIK 

rs10465385 GEN Categorical 0 SNP on chromosome X 

Gene: LINC02154 

rs10510985 GEN Categorical 0 SNP on chromosome 3 

Gene: FRMD4B 

rs10924809 GEN Categorical 0 SNP on chromosome 1 

Gene: CNST 

rs12522102 GEN Categorical 0 SNP on chromosome 5 

Gene: LOC105379004 

rs17197559 GEN Categorical 0 SNP on chromosome 5 

Gene: LOC105379004 

Aβ40 (CSFb) CDCb Continuous 41 40-residue Amyloid-β peptide 

Aβ42 (CSF) CDC Continuous 40 42-residue Amyloid-β peptide 

Aβ (CSF) CDC Continuous 176 Amyloid-β 

ptau (CSF) CDC Continuous 176 Phosphorylated Tau 

ptau/Aβ (CSF) CDC Continuous 176 Phosphorylated Tau to Amyloid-β ratio 



   
 

   
 

Feature name Feature 

category 

Data type Number of 

missing data 

Description 

Tau (CSF) CDC Continuous 176 Tau protein 

tau/Aβ (CSF) CDC Continuous 176 Total Tau to Amyloid-β ratio 

Age (DEMb) CDC Continuous 0 Age at baseline 

Sex (DEM) CDC Binary 0 Biological sex assigned at birth 

Education (DEM) CDC Categorical 0 Education at baseline 

Marital status (DEM) CDC Categorical 0 Marital status at baseline 

ADAS11 (COGb) CDC Categorical 0 Alzheimer’s Disease Assessment Scale – 

11 tasks 

ADAS13 (COG) CDC Categorical 1 Alzheimer’s Disease Assessment Scale – 

13 tasks 

CDRSB (COG) CDC Categorical 0 Clinical Dementia Rating scale Sum of 

Boxes 

FAQ (COG) CDC Categorical 2 Functional Activities Questionnaire 

LDELTOTAL (COG) CDC Categorical 0 Logical Memory - Delayed Recall - Total 

Number of Story Units Recalled 

MMSE (COG) CDC Categorical 0 Mini Mental State Exam 

RAVLT-forgetting (COG) CDC Categorical 1 Rey Auditory Verbal Learning Test - 

Forgetting (trial 5 - delayed) 

RAVLT-immediate (COG) CDC Categorical 1 Rey Auditory Verbal Learning Test - 

Immediate (sum of 5 trials) 

RAVLT-learning (COG) CDC Categorical 1 Rey Auditory Verbal Learning Test - 

Learning (trial 5 - trial 1) 

RAVLT-%forgetting (COG) CDC Categorical 2 Rey Auditory Verbal Learning Test - 

Percent Forgetting 

a Left: region on the left hemisphere of the brain, Right: region on the right hemisphere of the brain, 

b CSF: feature from the Cerebrospinal fluid category, DEM: feature from the Demographic category, COG: feature from 

the cognitive test category, CDC: the combination of COG, DEM, and CSF data, 

c For those SNPs that do not fall exactly on a particular gene, nearest genes have been reported. 



   
 

   
 

B  Method comparison for handling missing data 

To evaluate our method of handling missing data, we ran additional tests using two 

different approaches and compared the results. Initially, we replaced missing values in each 

feature with an out of range value (Twala, Jones, and Hand 2008) equal to three times the 

maximum value of that feature. This replacement was performed prior to the pre-processing step. 

The following options were used to replace missing data: 

Option 1:   Mean imputation: Replacing missing data for a feature with the feature's average 

value before the pre-processing step (Dziura et al. 2013), 

Option 2:   Replacing a feature’s missing data in two consecutive steps: a) before feature pre-

processing with the feature’s average value, and b) after pre-processing with an out of range 

value equal to three times the maximum value of that feature.  

Table B.1. Method comparison using Ctd-index as evaluation metric for handling 

missing data.  

Feature set Replacement with mean 

(Option 1) 

Replacement with mean & 𝟑 ×

𝐦𝐚𝐱 (Option 2) 

Replacement with 𝟑 × 𝐦𝐚𝐱 

(main) 

GEN 0.589 ± 0.049 0.589 ± 0.049 0.589 ± 0.049  

MRI 0.727 ± 0.025  0.727 ± 0.025  0.727 ± 0.025 

CDC 0.812 ± 0.022 0.803 ± 0.026* 0.822 ± 0.022a 

GEN+MRI 0.760 ± 0.045 0.760 ± 0.045 0.760 ± 0.045  

GEN+CDC 0.822 ± 0.027 0.807 ± 0.025 0.812 ± 0.019 

MRI+CDC 0.829 ± 0.031 0.815 ± 0.023* 0.831 ± 0.028 

GEN+MRI+CDC 0.824 ± 0.023* 0.788 ± 0.032 0.800 ± 0.027 

a mean ± standard deviation over 10 splits, best performance in each row has been highlighted in bold,  

*  paired t-test with p < 0.05 when compared to the main method. 

The results of method comparison for handling missing data using Ctd-index is displayed 

in Table B.1. The main method performed the best for CDC and MRI+CDC feature sets, and the 

difference was significant when compared to option 2. Option 1 (replacing missing data with 



   
 

   
 

mean) performed best for the GEN+CDC and GEN+MRI+CDC feature sets, and the difference 

was significant for the GEN+MRI+CDC feature set. Overall, the main method and option 1 

performed very similarly, with the main method slightly outperforming the latter. Option 2 had the 

worst overall performance in terms of Ctd-index. Table B.2 displays a similar information, but this 

time using IBS as the evaluation metric. 

Table B.2 Method comparison using IBS as evaluation metric for handling missing 

data.  

Feature set Replacement with mean 

(Option 1) 

Replacement with mean & 𝟑 ×

𝐦𝐚𝐱 (Option 2) 

Replacement with 𝟑 ×

𝐦𝐚𝐱 (main) 

GEN 0.206 ± 0.026 0.206 ± 0.026 0.206 ± 0.026 

MRI 0.160 ± 0.013 0.160 ± 0.013 0.160 ± 0.013  

CDC 0.119 ± 0.017 0.125 ± 0.017 0.111 ± 0.019a 

GEN+MRI 0.148 ± 0.023 0.148 ± 0.023 0.148 ± 0.023 

GEN+CDC 0.117 ± 0.018 0.128 ± 0.022 0.121 ± 0.016 

MRI+CDC 0.108 ± 0.025 0.115 ± 0.019 0.105 ± 0.016 

GEN+MRI+CDC 0.106 ± 0.011* 0.142 ± 0.015* 0.122 ± 0.016 

a mean ± standard deviation over 10 splits, best performance in each row has been highlighted in bold,  

*  paired t-test with p < 0.05 when compared to the main method. 

C  Pre-processing method comparison 

To investigate the effects of different data pre-processing methods on model 

performance and to evaluate the method used in this study, we employed two additional pre-

processing approaches and compared the results. The following approaches were used: 

Option 1:   All binary, categorical, and continuous features were left unchanged, i.e. raw data 

was fed directly into the network, 

Option 2:   Encoding categorical features with entity embedding (Guo and Berkhahn 2016) half 

the size of the number of categories, standardizing continuous features, and leaving binary 

features unchanged.  



   
 

   
 

Table C.1. Pre-processing method comparison using Ctd-index as evaluation metric.  

Feature set No processing (Option 1) Standardization (cont), Entity 

embedding (cat) (Option 2) 

Standardization 

(cont+cat) (main) 

GEN 0.568 ± 0.057 0.593 ± 0.036a 0.589 ± 0.049  

MRI 0.729 ± 0.025 0.727 ± 0.025 0.727 ± 0.025 

CDC 0.797 ± 0.030* 0.786 ± 0.038* 0.822 ± 0.022 

GEN+MRI 0.755 ± 0.044 0.729 ± 0.031 0.760 ± 0.045  

GEN+CDC 0.782 ± 0.064* 0.783 ± 0.033* 0.812 ± 0.019 

MRI+CDC 0.830 ± 0.033 0.793 ± 0.028* 0.831 ± 0.028 

GEN+MRI+CDC 0.811 ± 0.019* 0.785 ± 0.029 0.800 ± 0.027 

a mean ± standard deviation over 10 splits, best performance in each row has been highlighted in bold, 

*  paired t-test with p < 0.05 when compared to the main method. 

Table C.2. Pre-processing method comparison using IBS as evaluation metric.  

Feature set No processing (Step 5-1) Standardization (cont), Entity 

embedding (cat) (Step 5-2) 

Standardization 

(cont+cat) (main) 

GEN 0.216 ± 0.025 0.196 ± 0.014a 0.206 ± 0.026 

MRI 0.157 ± 0.011 0.160 ± 0.013 0.160 ± 0.013  

CDC 0.123 ± 0.015 0.134 ± 0.011* 0.111 ± 0.019 

GEN+MRI 0.149 ± 0.026 0.150 ± 0.018 0.148 ± 0.023 

GEN+CDC 0.138 ± 0.021 0.137 ± 0.019 0.121 ± 0.016 

MRI+CDC 0.106 ± 0.014  0.120 ± 0.016*  0.105 ± 0.016 

GEN+MRI+CDC 0.118 ± 0.019 0.125 ± 0.014 0.122 ± 0.016 

a mean ± standard deviation over 10 splits, best performance in each row has been highlighted in bold, 

*  paired t-test with p < 0.05 when compared to the main method. 

Table C.1 compares pre-processing methods using the Ctd-index. The main method 

outperformed option 1 and option 2 methods using CDC, GEN+MRI, GEN+CDC, and MRI+CDC 

feature sets. The difference was statistically significant in 2 out of 4 cases between the main and 

option 1 methods, and 3 out of 4 cases between the main and option 2 methods. Option 1 



   
 

   
 

performed best with MRI and GEN+MRI+CDC feature sets, with the improvement in 

performance being small for MRI but statistically significant for GEN+MRI+CDC comparing to 

the main method. Option 2 performed best when using GEN features, but the difference was 

small when compared to the main method. The main method showed the overall best 

performance using Ctd-index. According to the IBS results shown in Table C.2, the main method 

had the overall best performance. However, the values were closer to each other when 

compared to the Ctd-index results. 

D  Performance comparison between different survival 

models 

There are numerous continuous-time and discrete-time survival analysis models 

available in the literature, and several studies have attempted to compare their performance on 

real-life datasets (Spooner et al. 2020; Beaulac et al. 2020; Kvamme and Borgan 2019). Here, 

in order to evaluate the performance of our model, we have trained our data using the traditional 

Cox proportional hazard (CoxPH) model (Cox 1972) as benchmark, as well as several best-

performing deep learning-based models in the literature and compared the results with the 

method discussed in this manuscript, DeepSurv. The following deep learning-based survival 

analysis models have been used to train the data with all 63 available features in this step: 

1. DeepHit (Lee et al. 2018): DeepHit is a discrete-time survival analysis model that estimates 

the survival distribution's probability mass function (PMF) and combines the log-likelihood of 

the censored data with a ranking loss for improved discriminative performance. 

2. Nnet-survival or Logistic-Hazard (Gensheimer and Narasimhan 2019): Logistic-Hazard is a 

discrete-time survival model which parametrizes the discrete-time hazard rate with a neural 

network to optimize the survival likelihood. 

3. PC-Hazard (Kvamme and Borgan 2019): Piecewise Constant Hazard is a continuous-time 

survival model in which the hazard rate is assumed to be piecewise constant in predefined 

intervals. . 



   
 

   
 

4. Cox-Time (Kvamme, Borgan, and Scheel 2019): Cox-time is a non-linear and non-

proportional extension of the classic Cox regression model. The hazard ratio in the Cox-Time 

model is defined to include time as a regular covariate (𝑔(𝑡, 𝑥)), allowing for model 

interactions between time and other covariates.  

Model comparison results using the Ctd-index are shown in Table D.1. The traditional 

CoxPH model performed very similarly to our main model (DeepSurv; (Katzman et al. 2018)). 

Using the GEN and GEN+MRI+CDC feature sets, CoxPH outperformed DeepSurv statistically. 

DeepSurv outperformed CoxPH in 4 of 7 cases, but the differences were not statistically 

significant. When compared to other deep learning-based models, DeepSurv performed the best 

across all feature combinations. All of the differences were statistically significant when 

compared to the Logistic-Hazard model, and almost all of the differences were statistically 

significant when compared to the PC-Hazard model, with the exception of when the 

GEN+MRI+CDC feature set was used. DeepHit and Cox-Time model outcomes were more 

comparable to DeepDurv outcomes. DeepSurv outperformed the DeepHit model statistically in 

4 of 7 cases, while the results were significantly better in 2 of 7 cases when compared to Cox-

Time.  

Table D.2 displays the model comparison results using IBS as evaluation metric. The 

traditional CoxPH model performed very similarly to DeepSurv. DeepSurv outperformed CoxPH 

in 5 of the 7 cases, while CoxPH performed better in the remaining two. However, none of the 

differences were statistically significant. Our main model, DeepSurv, outperformed all deep 

learning-based models. However, contrary to the trend seen in Table 11, Logistic-Hazard and 

PC-Hazard performed most similarly to DeepSurv. DeepHit performed the worst in terms of IBS, 

and when compared to DeepSurv results, the differences were statistically significant in most 

cases, except when the GEN feature sets were used. When the MRI+CDC feature set was used, 

the IBS increase for the Cox-Time model was statistically significant compared to DeepSurv, and 

overall, Cox-Time was the second worst performing model. 

 



   
 

   
 

Table D.1. Model performance comparison using Ctd-index as evaluation metric. Here, 

performance of the main model, DeepSurv, is compared with the Cox 

proportional hazard model as benchmark, as well as four high-performing 

deep learning-based survival analysis models.  

Feature set CoxPH 

(Cox 1972) 

DeepHit  

(Lee et al. 

2018) 

LogisticHazard 

(Gensheimer and 

Narasimhan 2019) 

PCHazard 

(Kvamme and 

Borgan 2019) 

CoxTime 

(Kvamme, 

Borgan, 

and Scheel 

2019) 

DeepSurv 

(main  (Katzman 

et al. 2018)) 

GEN 0.651 

(0.027)*  

0.541  

 (0.050)*  

0.556  

(0.062)* 

0.532  

(0.049)* 

0.589  

(0.053)  

0.589  

(0.049)  

       

MRI 0.739  

(0.039)  

0.702   

(0.044)*  

0.669  

(0.061)* 

0.686  

(0.037)* 

0.718  

(0.040) 

0.727  

(0.025)  

       

CDC 0.817 

(0.028) 

0.810   

(0.020) 

0.763  

(0.049)* 

0.779  

(0.027)* 

0.811  

(0.036) 

0.822  

(0.022)a 

       

GEN+MRI 0.737 

(0.027) 

0.736   

(0.050) 

0.730  

(0.037)* 

0.710  

(0.048)* 

0.726  

(0.035)* 

0.760  

(0.045)  

       

GEN+CDC 0.811 

(0.022) 

0.790  

 (0.036)* 

0.757  

(0.044)* 

0.783  

(0.049)* 

0.795  

(0.021) 

0.812  

(0.019) 

       

MRI+CDC 0.829 

(0.022) 

0.814   

(0.023)* 

0.775  

(0.051)* 

0.770  

(0.051)* 

0.799  

(0.026)* 

0.831  

(0.028) 

       

GEN+MRI+C

DC 

 0.822 

(0.021)* 

0.785   

(0.027) 

0.773  

(0.040)* 

0.784  

(0.040) 

0.799  

(0.030) 

0.800  

(0.027) 

a mean (standard deviation) over 10 splits, best performance in each row has been highlighted in bold, 

*  paired t-test with p < 0.05 when compared to the main method. 



   
 

   
 

Table D.2. Model performance comparison using IBS as evaluation metric. Here, 

performance of the main model, DeepSurv, is compared with the Cox 

proportional hazard model as benchmark, as well as four high-performing 

deep learning-based survival analysis models. 

Feature set CoxPH  

(Cox 1972) 

DeepHit  

(Lee et al. 

2018) 

LogisticHazard 

(Gensheimer and 

Narasimhan 2019) 

PCHazard 

(Kvamme and 

Borgan 2019) 

CoxTime 

(Kvamme, 

Borgan, and 

Scheel 2019) 

DeepSurv 

(main (Katzman 

et al. 2018)) 

GEN 0.197 

(0.009)a 

0.216 

(0.011) 

0.208 

(0.017) 

0.208 

(0.012) 

0.215 

(0.032) 

0.206  

(0.026) 

       

MRI 0.160 

(0.020) 

0.186 

(0.010)* 

0.162 

(0.010) 

0.162 

(0.009) 

0.178 

(0.021) 

0.160   

(0.013)  

       

CDC 0.117 

(0.016) 

0.150 

(0.016)* 

0.113 

(0.011) 

0.113 

(0.012) 

0.124 

(0.018) 

0.111   

(0.019) 

       

GEN+MRI 0.151 

(0.013) 

0.180 

(0.014)* 

0.151 

(0.024) 

0.150 

(0.016) 

0.169 

(0.021) 

0.148 

(0.023) 

       

GEN+CDC 0.125 

(0.011) 

0.148 

(0.015)* 

0.123 

(0.013) 

0.122 

(0.013) 

0.134 

(0.020) 

0.121   

(0.016) 

       

MRI+CDC 0.107 

(0.012) 

0.145 

(0.013)* 

0.107 

(0.014) 

0.107 

(0.010) 

0.132 

(0.025)* 

0.106   

(0.016) 

       

GEN+MRI+C

DC 

0.111 

(0.015) 

0.157 

(0.016)* 

0.124 

(0.010) 

0.123 

(0.015) 

0.132 

(0.015) 

0.122   

(0.016) 

a mean (standard deviation) over 10 splits, best performance in each row has been highlighted in bold, 

*  paired t-test with p < 0.05 when compared to the main method. 
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