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Content (image) Generation
Brief introduction to the problem.
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What is content generation ?

▶ A typical example of content generation is art asset generation
in video game application.

▶ The generation allows for infinite content and minimal storage
requirements.

▶ Procedural content generation is the old algorithmic approach
for content generation.

▶ Uses designed models (no learning) to generate specific
content.

▶ Struggle with generalization and is time consuming.
▶ A model learning from a data set would be helpful.
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Image generation: An example

▶ A typical example is the generation of non-playable character
(NPCs) faces.

▶ We want the faces to look like faces (realistic).
▶ We want everyone to look different.
▶ We want control to create region-specific features and control

their expression.
▶ From now on, we consider faces to be object we want to

generate. x is the face variables and p(x) is the distribution of
faces.
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Generative Adversarial Networks (GANs)
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Concept

Generative Adversarial Networks (GANs)

▶ Fairly recent family of generative model introduced by
Goodfellow (2014).

▶ Generative models: learns a distribution pg(x) given a data
set x , allowing us to sample from that distribution.

▶ Regression learns p(y |x) (supervised), so it is not a generative
model.

▶ Gaussian Mixture Models (unsupervised) learns
p(π = k)p(x |π = k), thus is generative.
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Concept

Generative Adversarial Networks (GANs)

▶ We can train very accurate Discriminative models (D)
▶ Better than humans at identifying content of an image. (In

medical application for instance)
▶ GANs emerged from the recent success of these NN for

classification.
▶ We can train a Discriminative model (D) to discriminate real

from fake (generated) image.
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Concept

GANs: The Concept

▶ If the Discriminative Model D cannot identify that our
generated data is indeed fake, then it must be
realistic-looking.

▶ We train the Generative Model G to fool the Discriminative
Model D.

▶ It creates an Adversarial dynamic where D learns to
discriminate between real and fake data (say image) and G
tries to fool D.

▶ The better D becomes at distinguishing true from fake, the
better G has to become at creating realistic images.
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Objective function

GANs: Objective function

▶ pg(x) is the generator distribution over X
▶ Built using a prior input noise pz(z) z ∈ Z
▶ and a mapping Gθg : Z → X identified with G(z ; θg) in the

literature.
▶ G takes a random noise z as input and outputs an image x .
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Objective function

GANs: Objective function

▶ We also define Dθd : X → [0, 1] a discriminative function,
identified with D(x ; θd) in the literature.

▶ D takes as input an image x and returns the probability that
it is a TRUE image.

▶ We train D by maximizing
Etrue x [log D(x)] + Efake x [log(1 − D(x))]
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Objective function

GANs: Objective function

▶ Simulteanously, we train G to generate fake x classified as
true by D

▶ min
G

max
D

Ex∼pdata(x) [log D(x)] + Ez∼pz (z)[log(1 − D(G(z))]
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Results

GANs: results

Figure: Faces generated by original GAN (2014).
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Results

GANs: results

Figure: Faces generated by GAN modern architectures (2019).
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Problems

GANs: Common problems

▶ (1) Mode collapsing
▶ (2) Instability
▶ (3) Randomness
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Active Appearance Models (AAM)
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Introduction

Functional and shape data analysis
▶ Shape, form, appearance, outline, curves.
▶ Child learns about shape of objects before alphabet, etc..

Figure: Hey, that’s a face right there!
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Introduction

Functional and shape data analysis

▶ Shapes are invariant to: translation, rotation and scaling
▶ Shape registration, quantification of shape similarities, shape

classification, etc...
▶ A challenge of FDA remains: Infinite dimensions of the

problem
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Introduction

Functional and shape data analysis

Figure: Same shapes, different scale, rotation, translation.
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Active Appearance Models: Introduction

▶ Active Shape Model (ASM) is a statistical shape model; a
2-dimensional functional model.

▶ It’s a parametric approach to fit and identify shapes in an
image.

▶ The Active Appearance Model (AAM), is an ASM with an
additional layer: appearance (coloring).

▶ It’s a parametric approach to fit and identified colored shapes
in an image.
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Introduction

Active Appearance Models: Introduction

▶ Again, let us use faces as our colored shape.
▶ An AAM can model faces in a parametric manner.
▶ This is used for facial recognition.
▶ If we have a parametric representation for faces, maybe we

can generate new ones.
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The shape model

ASM: Notations

▶ The shape is defined by the landmarks.

Figure: Face Landmarks
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The shape model

ASM: Notations

▶ Typically vertex locations of the mesh.
▶ The mesh is a surface built with triangles, the collection of

vertices forms the shape
▶ Say s is the shape of an object with v vertices: s is

represented as a vector of size 2v

s = (x1, y1, x2, y2, ..., xv , yv ) (1)
▶ (Already wondering if we can do better with a functional

approach)
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The shape model

ASM: Mesh

Figure: Face Landmarks
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The shape model

ASM: Shape representation

▶ For faces, the different shapes account for different
individuals, poses, expression, etc...

▶ Standard assumption: We can express different shapes using a
base shape s0 and a linear combination of k shape vectors si .

s = s0 +
k∑

i=1
pisi , (2)

where the coefficients pi are the shape parameters.
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The shape model

AAM: Learning the shape vectors

▶ Given a data with landmarks (vertices).

Figure: Data set with landmarks
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The shape model

AAM: Learning the shape vectors

▶ Given a data with landmarks (vertices).
▶ We register the shapes: taking into account translation,

scaling and rotation
▶ This is done via a Procrustes Analysis (let’s assume it’s easy)
▶ After the Procrustes Analysis we can estimate s0 and si ’s
▶ Standard assumption: the shape vectors are orthonormal
▶ We apply PCA to the shapes to get the shape vectors si
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The shape model

ASM: Shape vectors

Figure: Base shape s0 and shape vectors si



Functional and Shape data for image generation
Active Appearance Models

The shape model

ASM: Shape reconstruction

Figure: Reconstruction of an observed shape s
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The shape model

AAM: Learning the shape vectors

▶ From a functional data perspective, that’s the good stuff.
▶ Let’s quickly go over the Appearance model
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The appearance model

AAM: Notations

▶ We consider appearance independently from shape.
▶ We learn appearances in within the base mesh s0

▶ The appearance of an AAM is A(x) defined over pixels x ∈ s0
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The appearance model

AAM: Representation

▶ Standard assumption: The appearance A(x) can be expressed
as a base appearance A0(x) plus a linear combination of m
appearance images Ai(x):

A(x) = A0(x) +
m∑

i=1
λiAi(x) ∀x ∈ s0, (3)

where the coefficients λi are the appearance parameters.
▶ Standard assumption: the images Ai(x) are orthonormal.
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The appearance model

AAM: Representation
▶ Given a data after Procrustes Analysis and shape analysis.
▶ The process of mapping the colors on a shape s to the shape

s0 is called wrapping (backward).
▶ We wrap the image appearances onto the base mesh s0 and

Figure: Wrapping appearance from s to s0
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The appearance model

AAM: Representation

▶ We wrap the images onto the base mesh s0 and
▶ now we have a data set of appearance all on the base mesh.
▶ The images Ai(x) are computed by applying PCA.
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The appearance model

AAM: base image and appearances

Figure: Base image A0(x) and appearances Ai(x)
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The appearance model

AAM: Appearance reconstruction

Figure: Reconstruction of an observed shape s
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Wrapping

▶ The process of mapping the colors on a shape s to the shape
s0 is called backward wrapping.

▶ The process of mapping the colors on a base shape s0 to any
shape s is called forward wrapping.

▶ Given a triangle formed by 3 identifiable vertices, any point in
the triangle can be identified using the distance to the 3
vertices.

▶ Usually via a linear combination of the vertices.
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Wrapping

Wrapping

Figure: Wrapping
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Wrapping

Reconstruction of a colored shape.
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Wrapping

Why ?

▶ I suppose from a generative perspective that is enough ?
▶ We can adjust pi and λi to create new faces.
▶ Though face generation is not the main purpose of these

models.
▶ It is usually facial recognition or landmark identification

(shape registration)
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Fitting an AAM

▶ To fit an AAM is to find the optimal shape parameters pis
and appearance parameters λis for a new image.

▶ Given an image I we can backward wrap it onto s0:
I(W (x , p)) (function of the shape parameters)

▶ We can try to reconstruct the look of this image with our
appearance model A0(x) +

∑m
i=1 λiAi(x)

▶ We want to identify pis and λis that minimizes:

∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x) − I(W (x , p))
]

(4)
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Fitting an AAM

▶ This is doable but difficult.
▶ Tons of gradient-based model with multiple tricks.
▶ We can talk about it later!
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Introduction

Geometry Aware Generative Adversarial Network
▶ First attempt that we know of to combine the deep learning

adversarial aspect of GANs with the shape analysis aspect of
AAMs.
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Introduction

GAGAN: Concept

▶ Uses ASM for the geometry of the image, but uses GAN
concepts in place of the appearance model.

▶ Multiple images (different random shapes) of the same
appearance are created.

▶ Fake and real images are fed to the discriminant D after
wrapping on the base shape s0.
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Introduction

GAGAN: Concept
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GAGAN: Shape model

▶ Once again, suppose we have v vertices, the shape is
represented by a vector of size 2v : s = (x1, y1, x2, y2, ..., xv , yv )

▶ Translation, rotation and scaling are removed using Procrustes
Analysis.

▶ Then, we extract the mean shape s0 and PCA is applied.
▶ We keep the k − 4 shape vectors si associated with the top

k − 4 eigenvalues λi , ...λk−4 (paper says keep till λk).
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Shape model

GAGAN: Shape model

▶ To allow for the generator to also affect scale, translation and
rotation,

▶ they build 4 additional components, for a total of k shape
parameters.

▶ s = s0 + Sp = s0 +
∑k

i=1 pisi
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Shape model

GAGAN: Shape model

▶ Claim: consider pi ’s to be independent Gaussian variable with
mean zero and variance λi .

▶ True for the k − 4 first one but what about translation,
rotation and scaling ? (paper uses λk−3...λk from PCA).
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Shape model

GAGAN: Shape model

▶ Claim: Normalizing the parameters p1√
λ1

, ..., pk√
λk

enforce
independence.

▶ Gives a criteria of how realistic is the shape:
▶

∑k
i=1

pi√
λi

∼ χ2

▶ They cite a book on that one, but no pages nor sections.
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GAGAN: Formal Definitions

▶ Given n images I ∈ Rn×h×w , where h is height and w width.
▶ and their shapes s ∈ Nn×v×2 (the vertices).
▶ For each shape sj (observation), they generate L perturbed

shapes ŝj = (ŝ1
j , ..., ŝL

j).
▶ Denote p̂j = (p̂1

j , ..., p̂L
j) the shape parameters associated

with the perturbed shapes.
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Formal Definition

GAGAN: Generator G

▶ Given a noise vector c j
i (for i = 1, .., L) (noise for GAN

appearance)
▶ denote ẑ j the variable concatenating the shape parameters

and the noise: ẑ j
i = (p̂j

i , c j
i ) (in paper ẑ j = (p̂j , c j) but p̂j is

supposed to be a vector).
▶ This ẑ is fed to the NN generator G who then produce an

image.
▶ Thus this step handles the appearance.
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GAGAN: Adversarial training

▶ For the adversarial training, we wrap fake and real images to
their base shape. (As in AAM)

min
G

max
D

EI,s∼pdata [log D(W (I, s))]

+ Ez∼N(0,1)[log (1 − D (W (G(z), ŝ)))]

▶ Still a bit unclear if we sample p̂ as well from a Normal(0,1).
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Training

GAGAN: Appearance preservation

▶ Finally, differences in head pose should ideally not affect
appearance.

▶ All shapes sj and shape parameters pj are mirrored (sj
M , pj

M).
▶ Given m() a function that flips images.
▶ We minimize (w.r.t. G) the distance (after wrapping on the

base shape s0):

LAP = |W (G(z), s) − W (m(G(zM)), m(sM))|
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GAGAN: Objective function

min
G

max
D

EI,s∼pdata [log D(W (I, s)]

+ Ez∼N(0,1)[log (1 − D (W (G(z), ŝ)))]
+ α · LAP



Functional and Shape data for image generation
Geometry Aware GANs

Training

GAGAN: Model
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GAGAN: Results
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Results

GAGAN: Control
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Results

GAGAN: Comparative Results
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AAM: Possible improvement

▶ Can we analyse the shapes s using functional tools ?
▶ Consider 2d vertices and using FPCA ?
▶ Can we also improve on the appearance model ?
▶ Should we/can we include pieces of the appearance model

even with adversarial training ?
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GAGAN

▶ Need clarification regarding training.
▶ Can we improve LAP: We should make sure that the different

images (different poses) of the same appearance (same
person) look alike when projected on s0.

▶ Can we control the shape parameters ?
▶ Get an interpretable set of shape parameters and then we can

fix them to our hearts desire.
▶ Can we get sparse shape parameters, allowing us to control

facial features individually.
▶ Can we better control appearance ?
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I would love to answer your questions.
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