
Neuroimaging Feature Extraction using a Neural Network Classifier
for Imaging Genetics

Cédric Beaulaca,b,∗, Sidi Wuc, Erin Gibsonb, Michelle F. Mirandaa, Jiguo Caoc, Leno
Rochaa, Mirza Faisal Begb, Farouk S. Nathooa, for the Alzheimer’s Disease Neuroimaging

Initiative1

aDepartment of Mathematics and Statistics, University of Victoria, Victoria, BC.
bSchool of Engineering Science, Simon Fraser University, Burnaby, BC.

cDepartment of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, BC.

Abstract
A major issue in the association of genes to neuroimaging phenotypes is the high dimen-

sion of both genetic data and neuroimaging data. In this article, we tackle the latter problem
with an eye toward developing solutions that are relevant for disease prediction. Supported
by a vast literature on the predictive power of neural networks, our proposed solution uses
neural networks to extract from neuroimaging data features that are relevant for predicting
Alzheimer’s Disease (AD) for subsequent relation to genetics. Our neuroimaging-genetic
pipeline is comprised of image processing, neuroimaging feature extraction and genetic as-
sociation steps. We propose a neural network classifier for extracting neuroimaging features
that are related with disease and a multivariate Bayesian group sparse regression model for
genetic association. We compare the predictive power of these features to expert selected
features and take a closer look at the SNPs identified with the new neuroimaging features.
Keywords: Dimensionality Reduction, Feature Extraction, Neural Network Classifier,
Bayesian Hierarchical Modelling, Imaging genetics

1. Introduction

Brain imaging genomic studies have great potential for better understanding psychopathol-
ogy and neurodegenerative disorders. While high-throughput genotyping technology can de-
termine high-density genetic markers single nucleotide polymorphisms (SNPs), neuroimag-
ing technology provides a great level of detail of brain structure and function [1]. Various
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modalities of brain imaging can be used to generate meaningful biological information that
can in turn be used to evaluate how genetic variation influence disease and cognition. In
Alzheimer’s disease (AD), structural modalities such as magnetic resonance imaging (MRI)
can detect the presence of neuronal cell loss and gray matter atrophy, both biomarkers of
neurodegeneration. Such neuroimaging phenotypes are attractive because they are closer to
the biology of genetic function than clinical diagnosis[2].

Imaging genetics data analysis is a statistically challenging task due to the high dimension
of both the neuroimages and genetic data. Further increasing the challenge is the fact that
the data can be of multiple forms; neuroimages can be collected in multiple formats, e.g.
MRI, ElectroEncephaloGram (EEG), Computerised Tomography (CT), Positron Emission
Tomography (PET) using different machines and in different institutions. Consequently, it
is important to find a general solution to the dimension problem that is applicable on a wide
range of data structure.

We consider studies having an emphasis on exploring the relation between genetic vari-
ation and brain imaging from structural modalities such as MRI and consider associated
statistical methodology for dimension reduction and genetic variable selection. We focus
our effort on the identification of SNPs that are potentially related to disease, for exam-
ple, AD, with brain imaging endophenotypes which have the potential to provide additional
structure related to the underlying etiology of the disease. Existing approaches for such
analysis are based on considering the imaging data through a specific set of regions of inter-
est (ROIs) (see, e.g., [3], [4], [5], [6], [7]) or they are based on a full voxelwise analysis with
statistical models fit at each voxel (see, e.g., [8], [9], [10],[11], [12]).

The first approach for statistical analysis in studies of imaging genetics developed brain-
wide and genome-wide mass univariate analyses [9]. A drawback of this framework is that it
ignores linkage disequilibrium and the associated multicollinearity between genetic markers
as well as dependence between the components of the imaging phenotype. Hibar et al. [8]
employed gene-based dimensionality reduction to avoid collinearity of SNP vectors. Vounou
et al. [6] employed sparse procedures based on reduced-rank regression and while Ge et al.
[11] considered multi-locus interactions and developed kernel machine approaches. A review
of methods is provided by Nathoo et al. [13].

Bayesian joint modelling combining imaging, genetic and disease data has been con-
sidered in [14] and [15]. The proposed joint models use logistic regression to relate dis-
ease endpoints to imaging-based features and a second regression relates imaging to genetic
markers. Spike-and-slab selection is employed in both regression components of the joint
model. Hierarchical models accounting for spatial dependence in the imaging phenotype
using Markov random fields have been developed in [16] and [17]. Zhu et al. [7] developed
a Bayesian reduced rank regression reducing the dimension of the regression coefficient ma-
trix and incorporating a sparse latent factor representation for the covariance matrix of the
imaging data based on a gamma process prior. Kundu et al. [18] proposed a semiparamet-
ric conditional graphical model for imaging genetics within the context of functional brain
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connectivity where a Dirichlet process mixture is used for clustering regression coefficients
into a modular structure. Azadeh et al. [19] developed a voxelwise Bayesian approach that
began by partitioning the brain into ROIs and then fitting multivariate regression models
to lower-dimensional projections of the voxel-specific data within each ROI separately and
in parallel across ROIs.

We investigate here a new approach for extracting imaging features in either the ROI or
the voxelwise setting. Statistical learning approaches for feature construction and dimension
reduction have been developed based on a number of approaches including Gaussian Mixture
Models (GMM) [20] and Support Vector Machines (SVM) [21, 22]. The ability of neural
networks (NNs) to effectively reduce the dimension of large data has been known for some
time [23]. Since then, NNs have been at the foundation of multiple feature extraction models
[24, 25, 26] in image analysis. The autoencoder (AE) is a commonly used NN model for
feature extraction [27, 28]. It consists of two pieces, an encoder and a decoder. The former
compresses the data, embedding it within a lower-dimensional representation, while the
latter decompresses this representation to its original dimension. Both of these components
are optimized simultaneously so as to reduce the reconstruction error. The encoder and the
decoder can take various forms but we will assume both are NNs.

Predicting a diagnosis successfully using NNs is supported by a large literature [29, 30,
31, 32, 33, 34] that has demonstrated that various modern neural network architectures,
such as Convolutional Neural Networks (CNNs) [35, 36, 37], weighted probabilistic neural
networks [38] and ensembles of deep neural networks [39, 36] can achieve extremely high
accuracy in the classification of MRI and PET scans. Specifically within the context of
imaging genetics, Ning et al. [40] were among the first to apply NN approaches. Their
approach was to train a NN taking both imaging data and genetic markers as inputs to
predict a binary disease response (AD diagnosis).

The first main contribution of this paper is to develop a neural networks classifier (NNC)
for extracting image-based features that emphasize disease. Our approach is equivalent to
an AE where we replace the decoder with a classifier model. Instead of training the encoder
in a way that the lower-dimensional representations can lead to a reconstruction with a small
error, we train the encoder in a way that the lower-dimensional representations are well suited
for the prediction of disease. Doing so ensures that the lower-dimensional representations,
the extracted features, are relevant in predicting the neurological disease of interest. We
thus combine the strength of AEs for producing low-dimensional representations with the
high predictive accuracy of NNCs to extract features relevant to disease diagnosis.

We demonstrate that it is possible to achieve higher prediction accuracy to classify disease
status (AD relative to normal controls (NC)) when using NNC features compared with
features based on known AD ROIs. This then provides a more relevant set of phenotypes
for SNP selection. In our proposed approach, we take the last hidden layer of a NNC as a set
of features automatically extracted by the model in a way that distinguishes diseased patients
from control patients. Using these features as an endophenotype allows us to identify SNPs
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that are simultaneously related to the MRI and are also more relevant for predicting disease
than expertly chosen features.

The second main contribution of this paper is that we propose a three-step imaging ge-
netic pipeline: image processing, feature extraction and finally genetic inference. Therefore,
this separates the pieces where we do not require interpretability such as image process-
ing and feature extraction from the pieces where we need interpretability, mostly genetic
inference. This separation is beneficial for two reasons. First, it allows us to utilize the in-
creased prediction accuracy of blackbox models for feature extraction. Second, it is easy to
modify and improve the three pieces individually, making this pipeline applicable to a wide
range of data structures. Consequently, the novelty of our pipeline lies in how we utilized
well-established models altogether.

The rest of the paper proceeds as follows. We introduce our proposed pipeline in Section
2. Then, in Section 3 we discuss the implementation of this pipeline, we introduce our
experimental testing setup and present our results for testing with ADNI data. Section 4
concludes with a discussion of our experimental results and possible extensions.

2. Proposed pipeline

We separate the image processing, the feature extraction and the genetic association
study into three distinct steps. This allows us to use black box models for the feature
extraction step without suffering from the drawback caused by the lack of interpretability.
We first introduce the concept and then provide a more formal definition of our modelling
approach.

2.1. Concept
Based on the premise that neuroimaging data is a better representation of the phenotype

of interest than clinical diagnostic, we aim at capturing genetic variations related to disease.
Due to the high-dimensionality of neuroimaging, we propose NNs to extract features related
to disease while simultaneously reducing data’s dimensionality.

We assume that the natural generation of data follows the premise that genotype is
related to brain structure that in turn is related to disease [41]. Our framework thus reverses
the process described in Figure 1, which, while clearly an over-simplification, provides a
useful mechanism for thinking about data analysis and SNP selection.

Genotype Endophenotype AD Diagnosis

Figure 1: A graphical representation of the assumed generative process.
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The automated disease-relevant feature extraction is based on training a NN on the
imaging data with the disease diagnostic variable as output. The neurons of the second to
last layer of this NN prediction function act as the features extracted by the model. Because
the NN is optimized to predict disease diagnosis as accurately as possible using the image
data, those neurons are in fact the variables constructed from the images that are the most
appropriate to predict the disease and are consequently relevant for SNP selection. An
alternative, which we make comparisons to in our test analysis are features extracted from
known disease regions using expert knowledge. Again, we can make an analogy with an AE.
The first few layers of our NNC compress the data to the reduced set of features we wish
to extract while the last layer, instead of attempting to reconstruct the input, replaces the
decoder with a loss for disease diagnosis.

2.2. Formal definition
Let vn,m denote voxel m ∈ {1, . . . , M} for subject n ∈ {1, . . . , N} and vn denotes the

complete imaging data for subject n. We identify with v∗
n the processed image for subject

n. Here, the processed images may take on different forms but v∗
n is some standardized

image data that the prediction model f takes as input. The processing might only involve
image registration in its simplest form or it might involve the extraction of volumetric and
cortical thickness statistics using FreeSurfer for instance. Then, yn is the disease phenotype
for subject n which can be binary or multi-class categorical. We further let gn,s denote the
genetic variant s ∈ {1, . . . , S} for subject n so that gn is the genetic data for subject n.

Let h be the image processing function which takes the images v as input and outputs
v∗. We define as f the classification function which takes v∗, the processed imaging data, as
input and outputs y, the disease phenotype. We define f as a NN function composed of L
layers each identified as fl : l ∈ (1, L), f1 being the input layer of fL the output layer. Each
layer l may have a different number of neurons x, say Kl. In our current parametrization,
the output layer is a KL-dimensional vector, o, where on,k = P̂ (yn = k), the predicted
probability that subject n belongs to class k. After training the neural network f , we fit a
statistical model, p, which has the genetic data g as explanatory variable and the neurons
of the second to last layer of f , fL−1, as response.

A detailed representation of the proposed pipeline is shown in Figure 2. All components
previously described are trained as follows: (i) process the raw images v, (ii) train a pre-
diction model, f , of choice by taking the processed images v∗ as inputs and the diagnosis
score as output and (iii) train the inference model p that predicts the features extracted
from the prediction model using genetic markers as inputs. The use of a statistical model
as our choice of inference model is based on the current availability of interpretable and
inference-focused models in the literature.

The proposed approach can be generalized to include various prediction models such as
CNNs taking images as inputs or different NN architectures with inputs being the imaging
features extracted from commonly used softwares such as FreeSurfer [42, 43]. Similarly,
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Figure 2: A graphical representation of the proposed pipeline. The prediction model f is depicted as a fully
connected NN with L layers though it need not be fully connected.

a wide range of inference models can be used and later combined using Bayesian model
averaging techniques that account for model uncertainty at this last stage.

As a proof of concept, in the following test analysis we use disease (AD), MRI and genetic
data from the ADNI1 study with FreeSurfer used for image processing, a simple NN for the
prediction model and a previously established multivariate group-sparse Bayesian regression
model for SNP selection.

3. Test application of the proposed pipeline

For the first implementation of our proposed pipeline, we compare the prediction accuracy
of the 56 volumetric and cortical thickness measurements considered in [5], [44], and [45],
which include locations of regions of interest such as the hippocampus, cerebellum and
ventricles relevant for AD, with features automatically extracted by our proposed technique.
We also compare the SNPs identified given those two sets of phenotype features.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
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2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).

3.1. Cohort of subjects
The cohort of subjects we use in our test application has been previously described by

Mirabnahrazam et al. [34]. Briefly, the ADNI1 database has genetic information for 818
subjects. Genotyping information of the ADNI1 subjects was downloaded in PLINK [46]
format from the LONI Image Data Archive (https://ida.loni.usc.edu/). During the
genotyping phase, 620,901 SNPs were obtained on the Illumina Human610-Quad BeadChip
platform. Genomic quality control was conducted using the PLINK software and yielded
521,014 SNPs for 570 subjects. When excluding subjects that had no diagnosis label available
we ended up with 543 subjects for our analysis. The diagnosis values we consider for this
experiment are NC, MCI and AD.

In summary, we have a cohort of 543 subjects with 145 NC, 256 MCI and 142 AD. We
have T1-weighted baseline MRI scans for every subjects as well as 521,014 SNPs.

3.2. Image preprocessing
The T1-weighted baseline MRI scans were downloaded from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (n=543). A detailed description of the MRI
acquisition protocols can be found on the ADNI website (https://adni.loni.usc.edu/
methods/documents/mri-protocols). The T1-weighted images v were then segmented
into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) tissue com-
partments using Freesurfer (version 6.0), which is freely available for download (http:
//surfer.nmr.mgh.harvard.edu), and has been described previously [42, 43, 47]. A stan-
dardized quality control procedure was used to manually identify and correct any errors in
the automated tissue segmentation in accordance with FreeSurfer’s troubleshooting guide-
lines. Subsequently, cortical GM was parcellated into 68 regions using FreeSurfer’s cortical
Desikan-Killiany atlas [48] and 62 regions using Freesurfer’s Desikan-Killiany-Tourville at-
las [49]. Subcortical GM was parcellated into 45 regions using Freesurfer’s “aseg” atlas and
subcortical WM was parcellated into 70 regions using Freesurfer’s “wmparc” atlas [50]. For
the white matter parcellation (wmparc), optional Freesurfer parameters were used to ensure
the entire white matter compartment was parcellated, (not just WM within a fixed default
distance from GM), and any T1 hypotensities were labelled as white matter. This was
done to ensure that the white matter parcellation included all white matter voxels and was
not biased by individual T1 hypointensity burden. For all other parcellations, the default
Freesurfer options were used. From these four parcellations, a total of 1860 features were
obtained. These features included:
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• The volume, mean, standard deviation, min, max, and range of Freesurfer normal-
ized T1 intensity values for the “aseg” (270 total features) and “wmparc” (420 total
features) atlas parcellations.

• The number of vertices, surface area, gray matter volume, thickness (mean, standard
deviation), curvature (mean, Gaussian), folding index, and curvature index for the
Desikan-Killiany-Tourville (558 total features) and Desikan-Killiany (612 total fea-
tures) atlas parcellations.

These 1860 features form v∗, the processed image.

3.3. Prediction model for feature extraction
We propose a fully-connected NN as a prediction model for this test application. The

inputs of our prediction model are the entirety of the features extracted with FreeSurfer
described previously, v∗. The output is AD diagnosis, which is a categorical variable for the
ADNI1 data base and finally, the second to last layer of this NN are the features we are
interested in.

In this proposed approach, there is great flexibility to build the early stages of the NN,
the encoder equivalent. Specifically, we have control over the number of hidden layers and
the non-linear activation function. Assuming the response is a KL-class categorical variable,
the output of the NN is a KL-dimensional vector o where on,k = P̂ (yn = k), the predicted
probability that subject n belongs to class k. The relation between the second to last layer
and the output layer can be thought of as the one established between predictors and output
in a multi-class logistic regression. To do so, we take KL linear combinations of the KL−1
inputs xL−1, so that o∗ = BxL−1, where B is a KL × KL−1 matrix of coefficients. Then, as
activation function, we apply, element-wise, the softmax function to make sure the values
are positive and sum to one: oj = exp(o∗

j )∑K

k=1 exp(o∗
k

)
.

The model is trained in a similar fashion to a multi-case logistic regression. We minimize
the negative log likelihood loss NLLL(o, y) = ∑N

n=1 nllln where nllln = − ∑KL
k=1 log(on,k)1(yn =

k). This is essentially the equivalent of maximizing the log likelihood of a multinomial dis-
tribution. Thus, one could think of the features extracted xL−1 to effectively be one logistic
regression away from the disease response. However, these features are constructed from
data-driven functions built from the input and one could think of the logistic regression step
as the decoder.

We use the Python language and the Panda package [51] to import and manipulate the
data set. The feature extraction is entirely done using Python. We use the Pytorch package
[52] to define and train the NNC. Our NN is a single hidden layer NN with 35 hidden nodes
trained with the Adagrad [53] optimizer. Finally, in order to train the NNC to distinguish
AD from NC patients and thus to extract features related with the difference between those
two groups, we only keep NC and AD during the training of the NNC, thus excluding MCI
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patients. In other words, we train the NNC on a cohort of 287 subjects (145 NC and 142
AD).

Almost all of the parameters, such as the number of hidden layers (1), the optimizer
(Adagrad), the learning rate (0.01), the learning decay (0) and the number of epochs (350)
were selected using cross-validation with the exception of the number of neurons in the
hidden layer. We have initially set the number of neurons in the second to last layer to 56
as we wanted to design our model to extract the same number of features as in previous
articles [5], [44], and [45]. However, reducing its number of neurons to 35 did not decrease
the accuracy, so our final set of automatically-extracted features has 35 brain features.

3.4. Inference model
The SNPs dimension contrasts with its small fraction expected to be related to the

imaging phenotypes. SNPs are connected to traits through various pathways and multiple
SNPs on one gene often jointly carry out genetic functionalities. Therefore, it is desirable
to develop a model to exploit the group structure of SNPs.

Wang et al. [54] developed Group-Sparse Multi-task Regression and Feature Selec-
tion (G-SMuRFS) to perform simultaneous estimation and SNP selection across pheno-
types. Consider matrices as boldface uppercase letters and vectors as boldface lowercase
letters. Given the SNP data of the ADNI participants as {g1, ..., gn} ⊆ RS, where n is the
number of participants (sample size), S is the number of SNPs (feature dimensionality),
G = [g1, ..., gn], and the imaging phenotypes as {x1, ..., xn} ⊆ RC , C the number of imag-
ing phenotypes, X = [x1, ..., xn], W being a S × C matrix of regression coefficients, where
the entry wij of the weight matrix W measures the relative importance of the i-th SNP in
predicting the response of the j-th imaging phenotype, the matrix algebraic mathematical
formulation of the regression is:

min
W

||W T G − X||2F + γ1||W ||Gr2,1 + γ2||W ||2,1

where ||.||Gr2,1 is the group l2,1-norm, devised by Wang et al. [54]. We recapitulate this norm
definition: consider that the SNPs, are partitioned into Q groups Π = {πq}Q

q=1, such that,
the i-th row of W , {wi}mq

i=1 ∈ πq are genetically linked, mq being the number of SNPs in πq.
Denote W = [W 1...W Q]T , W q ∈ Rmq×c(1 ≤ q ≤ Q), then the group l2,1-norm can be both
defined as

||W ||G2,1 =
Q∑

q=1

√√√√ ∑
i∈πq

c∑
j=1

w2
ij =

Q∑
q=1

||W q||F

While producing sparse point estimates of regression coefficients, the G-SMuRFS lacked
standard error computation. Boot-strapping standard error computations were demon-
strated to preform poorly when the true value of the coefficient is zero [55], so an equivalent
hierarchical Bayesian model was developed in [5]. The hierarchical model takes the form

xℓ|W, σ2 ind∼ MV Nc(W T gℓ , σ2Ic), ℓ = 1, . . . , n,
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with the coefficients corresponding to different genes assumed conditionally independent
W(q)|λ2

1, λ2
2, σ2 ind∼ p(W(q)|λ2

1, λ2
2, σ2) q = 1, . . . , Q, and with the prior distribution for each

W(q) having a density function that is based on a product of multivariate Laplace kernels

p(W(q)|λ2
1, λ2

2, σ2) ∝ exp
−λ1

σ

√√√√ ∑
i∈πq

c∑
j=1

w2
ij

 ∏
i∈πq

exp
−λ2

σ

√√√√ c∑
j=1

w2
ij

 .

This product Laplace density can be expressed as a Gaussian scale mixture which allows for
the implementation of Bayesian inference using a standard Gibbs sampling algorithm. The
algorithm is implemented in the R package bgsmtr, https://cran.r-project.org/web/
packages/bgsmtr/bgsmtr.pdf which is available for download on the Comprehensive R
Archive Network (CRAN). The selection of tuning parameters λ1, λ2 in this model requires
cross-validation.

This model serves as our primary inference model in this test application and we refer
to this model by the name of its associated package, BGSMTR.

3.5. Results
To visualize the proposed set of NN-extracted features in comparison to the features

selected based on standard ROIs, we compute a 2-dimensional embedding for both sets
of features using a t-distributed stochastic neighbor embedding (t-SNE) as proposed in
[56], a t-distributed variant of the original SNE proposed in [57]. Different from PCA
that finds a linear representation capturing as much variability as possible, SNEs try to
identify a low-dimensional representation to optimally preserve a neighborhood identity
[57]. A neighborhood-preserving embedding is especially interesting here as the features are
extracted to carry information about the disease status of the patient.

Figure 3 and 4 contain the embeddings of the training cohort containing strictly the NC
and AD patients. When inspecting the figures, it is easier to linearly separate the patients by
their status using the NN-extracted features. A randomly selected neighborhood in Figure
3 is more likely to have a high concentration of one class compared to a randomly selected
neighborhood in Figure 4.
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Status AD NC

Figure 3: 2-dimensional embedding of the NN-extracted features.

Status AD NC

Figure 4: 2-dimensional embedding of the expert-selected features.

11



Based on the assumption that neuroimaging features that can accurately predict disease
status are more closely related to the disease, we compare the accuracy performances of
logistic regression models that take our features as inputs, and the model that utilizes
features as in [5], [44], and [45]. For that purpose, we proceed with 50 repetitions of random
sub-sampling validation: randomly dividing the data set into a training set and a test set.
The training set contains 200 observations while the 73 other observations are assigned to
the test set. Compared to k-fold cross-validation, random sub-sampling validation has the
benefit of allowing us to fix the size of the training and testing set independently from the
number of Monte Carlo samples.

Table 1 shows the results. The model trained using the automatically extracted features
not only has a significantly higher accuracy (p-value < 0.0001) but also has a smaller per-
formance variance across the sub-samples. The better prediction performance suggests that
these features are useful for subsequent genetic analysis.

Features Mean Standard Dev.
Expert 0.81808 0.03552

Automatic 0.91726 0.02340

Table 1: Mean and standard deviation of the accuracy of a logistic regression that separate NC from
AD using two different sets of features: the ROI-based features (Expert) and the features automatically
extracted by our proposed NN classifier (Automatic).

To begin the genetic analysis we adjust for subject specific factors by fitting univariate
least squares linear regression for every feature (both NN-derived and ROI-based features)
onto the age, gender, education level, the APOE genotype and the total intracranial volume.
The residuals from each regression are then used as the adjusted imaging response [58, 59]
in the inference model.

We then proceed with a two-step process to reduce the number of SNPs selected. First,
we reduce the large number of SNPs to a smaller subset of 485 potentially related with AD
SNPs [5] based on expert advices. Second, we fit univariate models between every feature
and every SNP and keep the top 100 SNPs based on the resulting p-values [60], [61]. We
rank the SNPs by their smallest p-value, among all models they are included in.

Table 2 contains the top 20 SNPs extracted using univariate regression as explained
above. Status, novel or known, is checked against two previous publications, [21] and [5].
By comparing the SNPs associated with both sets of features, we first notice the top 3 SNPs
are quite similar and that overall many SNPs belong to both groups. Additionally, we notice
that the genes are also quite similar between the two sets of screened SNPs. However, we also
identified multiple SNPs that were not identified using the original, expert-based, features.
The possibility of identifying additional SNPs based on features that are more predictive of
disease is the potential added-value of the proposed approach. Thus the NN derived features
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SNPs related to NN-extracted features SNPs related to Expert-extracted features
SNP Gene Status SNP Gene Status

rs12758257(2) ECE1 rs17399090 DAPK1 known([5])
rs2243581 SORCS1 rs12758257(1) ECE1
rs213025(3) ECE1 rs213025(3) ECE1
rs12756690(25) ECE1 rs4935775(48) SORL1
rs6584777 SORCS1 rs2179179 NEDD9
rs9368621 NEDD9 rs475639 PICALM
rs213028(20) ECE1 rs17209374 SORCS1
rs9461448(90) PGBD1 rs6905101 NEDD9
rs11006130(16) TFAM known([54]) rs3026841 ECE1 known([54])
rs3739784 DAPK1 rs2276346(56) SORL1
rs7897726 SORCS1 rs212531(41) ECE1
rs12001404(28) DAPK1 rs17367504 MTHFR
rs3128521(27) DAPK1 rs9468690(50) NEDD9
rs2450129 GAB2 rs666682 PICALM
rs12378686(43) DAPK1 rs2064112 NEDD9
rs1318241 GAB2 rs11006130(9) TFAM
rs1114188(47) DAPK1 rs11218301(29) SORL1
rs11601559 SORL1 rs3118846(64) DAPK1 known([5])
rs731600 GAB2 rs3781827(45) SORL1
rs1893447 GAB2 rs213028(7) ECE1

Table 2: Second screening results: top 20 SNPs using simple linear regression (univariate regression) with
NN-extracted features and expert-extracted features, respectively. SNPs in bold are found related to both
sets of features, the superscripted number identifies the rank of the SNPs when using the other set of features.

can be used alongside more standard ROI-based features. These novel SNPs could simply
be carrying a gene specific signature but this is also a reason why we rely on a multivariate
regression model to determine the final set of SNPs.

For this reason, we follow with a subsequent multivariate regression that will better allow
us to distinguish between association with the features and confounding SNPs. We use the
100 screened SNPs as predictors in our inference model, the BGSMTR model described
earlier.

Table 3 contains the top 20 SNPs ranked by the posterior standard score: the posterior
mean divided by the posterior standard deviation. In this table we see again a mix of
novel and known SNPs and once again, the status, novel or known, is checked against two
previous publications, [21, 5]. Among other, identifying the association with AD through
MRI features of SNPs rs1699105, rs1699105, rs2025935 and rs12209631 to name a few is
consistent with previous publications [21, 5]. On the flip side, if we only discover known
SNPs then there is little advantage to our approach. The SNP rs6511720 is ranked very

13



SNP Gene Chromosome Status No. of
related features

rs2243581 SORCS1 10 1
rs1699105 SORL1 11 known([5]) 4
rs6511720 LDLR 19 15
rs6457200 NEDD9 6 8
rs11006130 TFAM 10 known([54]) 3
rs2025935 CR1 1 known([5, 54]) 1
rs1568400 THRA 17 known([5]) 1
rs3785817 GRN 17 11
rs3026845 ECE1 1 1
rs12209631 NEDD9 6 known([5]) 5
rs2418828 SORCS1 10 1
rs3118846 DAPK1 9 known([5]) 1
rs213037 ECE1 1 1
rs1801131 MTHFR 1 3
rs9368621 NEDD9 6 1
rs3793647 DAPK1 9 2
rs17014873 BIN1 2 1
rs12758257 ECE1 1 1
rs762484 TF 1 1
rs2182335 NEDD9 6 known([54]) 1

Table 3: BGSMTR results: top 20 SNPs related to NN-extracted features with the highest standard score.
The last column counts the number of NN-extracted features for which a 95% credible interval excluded
zero.

high on the list and was associated with 15 features (according to 95% credible intervals,
not accounting for multiple testing). The SNPs rs6457200, rs2243581 and rs3785817 are also
ranked high and/or are related with multiple features.

The results above provide a strong argument in favour the proposed pipeline; the features
extracted are not only better at predicting the neurological disease of interest but also
allowing the identification of different SNPs. Furthermore, the extraction process is data-
driven and requires no expert advice, outside of the diagnostic.

4. Discussion

Given the results of the previous section, we argue in favor of using automatic feature
extraction in addition to ROI or voxelwise features to find signal potentially novel SNPs that
may not be detected when using ROIs or voxels alone. Our focus here is to identify SNPs
related with MRI in a manner that is predictive of disease and obtain confidence intervals and
posterior distributions. Integrating machine learning approaches within imaging genetics
studies is of potential use as demonstrated in our analysis.
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Additionally, our work demonstrates the use of different objective functions to extract
features and reduce the dimension of large observations, such as neuroimages. Instead of
using unsupervised models, we are able to direct the feature extraction towards a variable of
interest, in our case the diagnostic variable. However, with gradient-based models, such as
NN, we can design many other objective functions and tailor the feature extraction process
for problem specific needs. This idea can be applied in various ways when we analyse
neuroimages, and we recommand considering a large collection of objective functions that
are data-driven when extracting features instead of strictly relying on expert-advice.

We choose to use a NN for feature extraction, this comes with strengths and weaknesses.
Because our goal is to do inference at the SNP level we agreed to lose interpretability on
the neuroimage feature level, this is usually considered a weakness of blackbox models such
as NNs. In counterparts, this allows us to get complicated features that are functions of the
complete processed images and the use of classification models ensure that those features are
indeed related to AD. We acknowledge a loss in the interpretability of regression coefficients.
Nevertheless we believe the automatic feature extraction approach provides added value
when used alongside studies that are conducted at either the ROI or voxelwise level. It
requires no external expertise for feature selection. The features are built considering disease
prediction through nonlinear representations of neuroimaging.

One advantage of the procedure we propose is that we can easily improve on each of
the three pieces of the pipeline separately. One avenue for future work is to review how to
process the images. In this first implementation of our proposed pipeline we use the well
established FreeSurfer software to obtain volumetric and cortical thickness statistics from
the MRI scans. However, we believe the fact our features were automatically extracted in
a data-driven way was the reasons why our features have higher predictive power. Thus, it
seems reasonable to extend that principle to image processing and also try to automatically
process the images in a data-driven way. For instance, a common NNC for images is the
Convolutional Neural Networks (CNNs) [35, 36, 37]. Using a CNN taking as input the 3-
dimensional brain scan images and training this model to predict the diagnosis would be of
potentially great value for further investigation. The convolutional layers replace some of
the image processing steps and the lower-level layers act as the feature extractor. However,
some processing, mostly registration, would still be required. Another interesting approach
to explore is to use an AE to reduce the dimension of the images in an unsupervised manner
first. Different AEs can be trained for each brain regions separately and it allows the number
of features extracted per region to vary. This allows the collection of AEs to extract more
features from regions with higher variability or from regions with more predictive power.

Finally, the last step of our pipeline involves an inference step using a multivariate
Bayesian group sparse regression. There is scope for generalizing this step to account for
model uncertainty where the Bayesian model used is included within a collection of different
models (e.g., [14] [15] [16] [7] [18]) and then Bayesian model averaging is used for inference
at the SNP level while accounting for model uncertainty.
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