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Abstract

It is di�cult to assess the quality of a fitted model when facing unsupervised
learning problems. Latent variable models, such as variational autoencoders and
Gaussian mixture models, are often trained with likelihood-based approaches. In
the scope of Goodhart’s law, when a metric becomes a target it ceases to be a good
metric and therefore we should not use likelihood to assess the quality of the fit
of these models. The solution we propose is a new metric for model comparison
or regularization that relies on moments. The key idea to study the di�erence be-
tween the data moments and the model moments using a matrix norm, such as the
Frobenius norm. We show how to use this new metric for model comparison and
then for regularization. We show that our proposed metric is faster to compute and
has a smaller variance than the commonly used procedure of drawing samples from
the fitted distribution. We conclude this article with a proof of concept for both
applications and we discuss future work.

Keywords : Moment estimators, Latent Variable models, Gaussian Mixture Mod-
els, Variational Auto-Encoders, Frobenius norm
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1 Introduction

When fitting supervised models, statisticians and computer scientists alike have come
up with a variety of metrics in order to evaluate the quality of their predictions, from
simple mean-squared error to general loss functions. However, in the context of un-
supervised learning there is no direct measure of success and it can be di�cult to
assess the validity of the fitted model [12].

Assume an unsupervised learning context where we have a data set S = {x1, ...,xN }
and the abstract goal of capturing the distribution p (x). One way to train such model
is to assume a distribution and then maximize the likelihood of the data set with
respect to the distribution parameters. Then the trained models are assessed and
compared using the likelihood as well. Goodhart’s law [10, 27] states that when a
measure becomes a target, it ceases to be a good measure and thus we should not
strictly rely on the likelihood to evaluate models that were trained using the likelihood.

In this article we propose a new way to assess the quality of the fit of a large family
of unsupervised models with respect to our abstract goal of capturing the distribu-
tion p (x). In other words, we propose a way to measure if estimated distribution p̂ (x )

resembles the observed distribution pS (x ). More precisely, we o�er a diagnostic tech-
nique for parametric latent variable models such as Variational AutoEncoders (VAEs)
[15, 16] and Gaussian Mixture Models (GMMs). Our proposed metric evaluates the qual-
ity of the fitted model; we compare the learned parameters of the unsupervised model
with the observed data distribution the model is trying to capture. We do so by build-
ing two distinct moment estimators. The main purpose of such metric is to provide
a way to compare the fit of multiple models from di�erent families by assessing how
well these models captured the first two moments of the data. Though capturing the
first and second moment of a data set is not a su�cient condition to claim the trained
model has captured the data distribution it certainly is a necessary condition under
some assumption we discuss later.

In statistics and machine learning, Goodhart’s law is often compared with the con-
cept of overfitting. One popular way to circumvent model overfitting has been reg-
ularization. Consequently, we o�er a second perspective on our new metric; it can
be used for regularization. Our metric favours simple models such as a simple Gaus-
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sian distribution, thus it can be easily integrated in the optimization procedure as a
regularize.

The technique we propose is fast to compute, works for a wide range of models and
is built upon a rigorous mathematical formulation. It provides a new way to compare
multiple models or regularize them and behaves similarly to previously used heuristic
techniques.

In the next section, we establish the family of latent variable models suited for this
metric. After we discuss related work in section 3, we discuss the moments estimators
used in section 4. In section 5, we present our metric and its implementation and next
we demonstrate how it performs on simple examples in section 6. We then introduce
the framework for the application of our metric for regularization in section 7 and
we demonstrate how it behaves as a regularizer in section 8. Finally, we discuss the
limitations of our approach in section 9 before some concluding remarks in section
10.

2 Latent variable generative models

In this section we define the family of Latent variable generative models (LVGMs).

Assume we have a data set S = {x1, ...,xN } consisting of N observations of a D-
dimensional variable x. Assume x ∈ X which is D-dimensional. We want to estimate
the distribution of the random variable x but it is too complicated to be captured by a
simple distribution. Latent variable models suppose there exist an unobserved latent
variable, say z, that has a direct influence on the distribution of x

p (x) =
∫
z
p (x|z )p (z)dz , (1)

where we assume z ∈ Z which is M -dimensional. The model proposed by equation
(1) is quite general but allows relatively complex marginal distributions over observed
variables x to be expressed in terms of more tractable conditional distributions p (x|z )
[7]. Similarly, it leads to a tractable joint distribution as well

p (x, z) = p (z)p (x|z ), (2)

and this is quite often represented using a simple graph as seen in Figure 1.

3



z x

Figure 1: Graphical representation of latent variables models with joint distribution
p (x, z) = p (z)p (x|z ).

These models are generative models because learning p (x, z) = p (z)p (x|z ) allows
us to generate new samples of x using ancestral sampling. What makes this model
probabilistic is that the mapping from z to x is not a deterministic function f : Z → X
but instead a probabilistic mapping from Z to Θ, where Θ is the parameter space of
pθ (x|z ); θ ∈ Θ. We call pθ (x|z ) the emission distribution or observation distribution
interchangeably.

When training or fitting such models, we train the function f : Z → Θ to maxi-
mize the likelihood of the data set S under the model of equation (1). This mapping
f explains the e�ect of z on x and is at the centre of latent variable models. Learn-
ing this function f is the main challenge of training latent variable models and the
Expectation-Maximization algorithm (EM) or variational inference are commonly used
strategies to learn this function. In most cases, p (z) is assumed to be known and fixed
but in some cases the parameters of p (z) are estimated as well.

Usually pθ (x|z ) is a simple parametric distribution and the latent variable increases
the complexity of pθ (x). Additionally, the function f can take many forms, from simple
linear combination to neural network functions. We use f (z) interchangeably with f

or the distribution parameters it outputs directly.

Let us introduce a simple example. Assume the emission distribution is Poisson:
pθ (x|z ) = Poisson(λ) then f : Z → Ò+ because θ = λ ∈ Ò+ and we use f (z) and λ (z) inter-
changeably. If there exist a simple mapping from the parameters of the distribution
to its expectation and its variance, we also use them interchangeably. For the Poisson
example, Ex [x|z] = λ (z) and Varx [x|z] = λ (z).

One important detail to bring up is that the moments are only meaningful for a
certain family of emission distributions. For the application of our metric, we will
consider the family of emission distribution for which the moment generating function
exists.
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2.1 Probabilistic Principal Component Analysis

The Probabilistic Principal Component Analysis (pPCA) [29, 7] is a member of the LVGM
family we just described where p (z) is assumed to be a normal distribution N (0, I ). We
also assume the emission distribution to be Normal: p (x|z) = N (W z + b, I σ2). In this
formulation, we see that f : ÒM → ÒD is a linear function that maps the latent variable
z to Ex [x|z]: Ex [x|z] = µ (z) = W z + b . Outside of estimating W and b as part of f , the
model also estimates the parameter σ2 though it is not a function of z . However it is
a function of D and M , the dimension of X and Z.

The parameters of pPCA can be obtained analytically as the solution of a direct
maximization of the likelihood or with the EM algorithm.

2.2 Variational AutoEncoders

The VAE is also a member of the LVGM family. It is assumed that z is a continuous vari-
able where p (z) is assumed to be N (0, I ) in the introductory papers [15, 16]. p (x|z) can
be any parametric distribution where f (z) outputs the parameters of this distribution.
For instance, if p (x|z) is normal then f (z) will output a mean and a variance parameter,
f : ÒM → ÒD ×Ò+(D ,D ) .

One novelty of VAEs is that the function f proposed is much more flexible than a
linear combination; it is a neural network. In turn, this makes the posterior distribu-
tion p (z|x) intractable and prevents the model from being fitted by the EM algorithm.
The solution proposed is to assume a variational distribution q (z|x) and optimize the
likelihood by maximizing the Evidence Lower BOund (ELBO) [7, 15], a lower bound of
the observed-data log-likelihood.

2.3 Gaussian Mixture Models

For a GMM with K -components we define z as a k-class categorical variable, z ∈ {1, ...,K } =
Z, p (z) is a categorical distribution where πj = p (z = j ), and ∑K

j=1 πj = 1. Finally, setting
p (x|z = j ) = N (µj , Σj ) leads to a GMM:

p (x) =
K∑
j=1

πj p (x|z = j ). (3)
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In this situation, f maps the latent variable to a pair of distribution parameters, µ
and Σ, f : {1, ...,K } → ÒD ×Ò+D×D . In this particular case Ex [x|z] = f1 (z) where f1 is the first
output of f (z) or simply µ (z) and Varx [x|z] = f2 (z) = Σ(z).

The GMM is a special case of LVGM where we also estimate the parameters {πj : j ∈
1, ...K } of p (z), identifiable up to a permutation. A GMM is usually trained with the EM
algorithm.

3 Related Works

In this article, we propose a metric to evaluate the goodness-of-fit of the family of
latent variable models defined in section 2 and in this section we discuss some com-
mon alternatives. When proposing new LVGMs researchers rely either on the likeli-
hood of the data under the fitted model or a heuristic analysis of generated data
points [15, 19, 14, 31, 30]. To evaluate the performance of the models, both those tech-
niques have their fair share of problems which we discuss in this section. The metric
we propose is an alternative to those techniques.

A problem with evaluating models with the likelihood is that a high likelihood does
not necessarily mean that the proposed model captured the distribution of the ob-
served data. For instance, Bishop et al. [7] demonstrate that for GMMs it is possible to
have a likelihood be infinite (∞) by setting the mean of one component to be exactly
one of the observed points, say xi , and then pushing the variance of that compo-
nent to 0, thus the likelihood of xi under that particular component will be infinite.
Similarly, Zhao et al. [31] built a toy example where the ELBO (a lower bound of the
log-likelihood) would converge to infinity.

Another commonly employed strategy is to generate new observations and try to
determine if they look like real data with a simple visual inspection, this is a technique
used by many authors [15, 19, 14, 16, 31, 30]. A weakness of visual inspection is that it
is subjective, it incentivizes cherry-picking of results and it is not a rigorous means of
comparing models.

Comparing data moments with model moments have been proposed in the past
but only for training purposes [3, 4, 8, 19, 23]. Anandkumar [3, 4] proposes e�cient

6



ways to code and optimize latent variable models by comparing the true data set with
a sample generated from the model. Podosinnikova [23] approaches this topic very
thoroughly in their thesis where they also discuss the use of moment-generating func-
tion estimators. What we propose here is di�erent; we propose a metric. Even though
we discuss the possibility of using our metric for optimization in later sections we be-
lieve there already exists a rich literature that discusses new ways of optimizing latent
variable models but few publications that address the lack of evaluation metrics.

4 Moment estimators

In this section we define two di�erent moment estimators for the first and the second
moment. Our goal is to build di�erent estimators that contain di�erent information.
To begin, we define moment estimators for the data set, we call those Data Estimators
(DE). Then, we define another set of moment estimators that represent the distribution
captured by the LVGM, we call those Forward Model Estimators (FME).

4.1 Second moment

We build two di�erent estimators of the same quantity, the second moment. One uses
observed data while the other uses the proposed generative model. What makes the
proposed FME di�erent is that we do not sample new data points from the LVGM but
instead rely on a simple probability identity to build the FME.

To do so, let us introduce the well-know Law of Total Variance

Varx (x) = Ez [Varx (x|z)] + Varz [Ex (x|z)], (4)

and notice the second term is

Varz [Ex (x|z)] = Ez [Ex (x|z)2] − (Ez [Ex (x|z)])2 (5)

= Ez [Ex (x|z)2] − (Ex [x])2. (6)

We combine and reorganize both equations

Varx (x) + (Ex [x])2 = Ez [Varx (x|z)] + Ez [Ex (x|z)2] . (7)
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We have reorganized both terms in this particular way because the left-hand side of
equation (7) is independent of the latent variables and can be estimated from S inde-
pendently from the choice of model while the right-hand side contains information
about both the expectation and the variance of the generative model. Additionally,
notice the left-hand side is actually Ex [x2], the second moment of x and thus our work
here consists of comparing two di�erent estimators of Ex [x2] which we introduce next.
The left-hand side of equation (7) can be estimated using the observed data

Varx (x) + (Ex [x])2 ≈
∑n
i=1 (xi − x̄)T (xi − x̄ )

n − 1 + x̄T x̄ := DE, (8)

where x̄ is the mean vector. The right-hand side of equation (7) can be estimated using
the proposed generative model through a Monte Carlo sample of pθ (z ) and using both
Varx (x|z) and Ex (x|z).

Ez [Varx (x|z) + Ex (x|z)2] =
∫
z
(Varx (X |Z = z ) + Ex (z|z = z )2)p (z )dz (9)

≈ 1

m

m∑
i=1

[
Varx (x|z = zi ) + Ex (x|z = zi )T Ex (x|z = zi )

]
:= FME, (10)

where zi ∼ p (z), and Ex (x|z = zi ) and Varx (x|z = zi ) are expressed as functions of f (zi ).
Thus this estimator relies on both components of the fitted LVGM: p (z) and f (z). This
is the forward model estimates (FME). Notice that this estimator does not require
we sample from pθ (x |z ) and directly uses the estimated parameters of the emission
distribution. It is faster to sample a large amount of z than sample a large amount
of x because traditionally M << D . Additionally, this is a rather simple Monte Carlo
sample and it is unbiased [25].

Thus it follows from equation (7) that

(Varx (x) + (Ex [x])2) − (Ez [Varx (x|z)] + Ez [Ex (x|z)2]) = 0, (11)

and since both DE and FME are unbiased estimators of the second moment then con-
sequently, the gap between those two estimators reflects how the LVGM captured the
second moment of the data set; the bigger the gap is, the poorer the fit is. Thus, we
propose to analyse the following moment estimator gap

DE − FME, (12)

which is a matrix of dimension D × D .
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4.2 First moment

We have a similar result for the first moment

Ex [x] = Ez [Ex (x|z)], (13)

where we estimate the left-hand side with x̄ (DE) and the right-hand side with 1
m

∑m
i=1 Ex (x|z =

zi ) where zi ∼ pθ (z ) (FME). However, to get a complete picture of the fitted LGVM pro-
ficiency at estimating the distribution of the observed-data we proposed looking at
the gap between moment estimators for both the first and the second moment.

4.3 Additional justifications

For any generative model, it is always possible to generate a new sample of G points
say SLVGM = {x̃1, ..., ˜xG } and a simple model estimator for the first and second moment
would be to simply compute 1

G

∑G
i=1 (x̃i ) for the first moment and similarly 1

G

∑G
i=1 (x̃i x̃i T ),

let us call those sample estimators (SE). These estimators could replace both FMEs
defined previously as they also reflect the distribution learned by the LVGM. Con-
ceptually, the SEs are simple and easy to use and thus we want to justify why our
estimators (FMEs) are better.

To begin, FMEs are faster to compute by a slight margin. In order to draw the same
sample size for the Monte Carlo estimates, say m sample, we need m sample for the
FMEs. However, for the SEs have to draw twice as many samples (2m), since we must
sample from p (z) m times and then from p (x|z) an additional m times. However, more
importantly, M << D , this means that not only we FME requires half as many sam-
ples, but they are samples from a much lower dimension distribution which further
increases the di�erence in computational cost between the FME and the SE.

Next, our estimator has a smaller variance for both the first and the second mo-
ment. A complete proof is located in the appendices.

Finally, we proceeded with a simulation that demonstrates which estimators is
closer to the true LVGM moments. For simple models, such as GMMs, we can com-
pute analytically Ez [Varx (x|z)+ Ex (x|z)2], the LVGM second moment. We compared the
gap between the true LVGM second moment and the FME to the gap between the true
LVGM second moment and the SE and plot both against m the number of Monte Carlo
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samples. We can see in figure 2 that the estimator we proposed (FME) is overall closer
to the true LVGM second moment than the SE while being faster to compute.

Figure 2: The evolution of both gap plotted against m. This gap is computed using the
Frobenius norm as justified in section 5.

5 MEGA: a new metric for comparing models

For latent variable models as defined in section 2 we assess the ability of the model to
capture the moment of the data set S by comparing the DE with the FME. Since we are
looking at the di�erence between two di�erent moment estimators of the same value,
we named this metric the Moment Estimators Gap (MEGA). We study the di�erence
between our two second moment estimators and we refer to this matrix as 2MEGA.
Similarly, we refer to the vector representing the first moment estimator gap as 1MEGA.

5.1 Selecting a matrix norm

In order to make the MEGA tangible and comparable we propose to use a matrix norm
of the MEGA as our metric. There exist a wide range of possible candidates, let us
introduce a few and justify our finale choice.
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We want to use a norm that looks at the global properties of the matrix and for-
tunately Rigollet [24] introduces and studies the behaviour of well-established matrix
norms. To begin we use norms inspired by vector norms. Given the vector v , assume
|v |q is the following vector norm

|v |q = (
∑
i

|vi |q ) (1/q ) , (14)

and given the matrix M , its matrix equivalent is |M |q

|M |q = (
∑
i j

|Mi j |q ) (1/q ) . (15)

When q = 2, this is a special case call the Frobenius norm

|M |2 = |M |F = (
∑
i j

|Mi j |2) (1/2) =
√

Tr(MTM ), (16)

where Tr is the trace operator that sums the elements of the diagonal of the input
matrix.

This norm is also a member of the Schatten q-norms (for q = 2) which is a family
of matrix norms defined as the vector norm of Equation 14 for the singular values of
the matrix. Since we work with second moment estimators, our matrix M is a squared
matrix (dimension m×m) and symmetric and thus the singular values of M are equal to
its eigenvalues. We identify the vector of eigenvalues as λ. Consequently, the Schatten
q-norm for matrix M is | |M | |q = |λ |q .

Another member of this family is considered, when q = ∞ we define | |M | |∞ = λmax =
| |M | |op and this is referred to as the operator norm.

In random matrix theory and in matrix estimation, these two norms appear fre-
quently and are consequently well known in the statistical research community. For
instance, in covariance matrix estimation it is possible, under mild assumptions, to
bound the operator norm of the di�erence between the true covariance matrix and
simple estimators [24]. Because of the popularity and the known properties of both
the Frobenius norm and the operator norm, they are both legitimate options to mea-
sure the MEGA.

The bigger the 2MEGA is, the further away our model second moment is from the
data second moment. However, one can perceive the Frobenius norm as the length
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of the hypotenuse of a multidimensional triangle whose sides are given by the eigen-
vectors of the matrix while the operator norm is the length of the longest cathetus of
the same multidimensional triangle. For that reason and for computational reasons
expressed in the next section, we prefer MEGA-F and this will serve as our metric in
the sections to come. In other words, the metric we propose to evaluate the quality
of the fit for the second moment is

2MEGA-F = |2MEGA|F = |DE-FME|F . (17)

Additionally, if we also consider 1MEGA, we can then again simply use the Frobenius
norm (the vector q-norm with q = 2) on the vector 1MEGA

1MEGA-F = |1MEGA|2. (18)

5.2 Implementation of the selected norm

Implementing the Frobenius norm is quite straight forward. To compute to Frobenius
norm, we need square of the MEGA , m2 operations, and then sum its diagonal which
results in m2 +m operations. The largest eigenvalue of a matrix can be estimated with
the von Mises iteration [21], where each of the p iterations will require m2 operations
resulting in pm2 operations in total. Consequently, because we can implement an exact
computation of the Frobenius norm and because it is computationally faster (as soon
as p ≥ 2) we strictly consider the Frobenius norm for the rest of this article. However,
there could be some merit to exploring the operator norm as well in future work.

We implemented the vector Frobenius norm and the matrix Frobenius norm in
Python using the NumPy library [11] and using the Pytoch library [22]. We also imple-
mented a MEGA function that takes as input a sample of Varx (x|z) and Ex (x|z) alongside
the data set S and returns 1MEGA-F and 2MEGA-F. These implementations are publicly
available on the author’s GitHub [5].

6 Experiments : comparing models

Now that we established the metric, let us use it to compare two distributions p̂ (x )
learned from two di�erent models.
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For this demonstration we use simple 2-dimensional observations. We demon-
strated that large MEGAs are associated with poor fit when visualizing generated data
from LVGMs. In other words, our metric is concordant with the currently used tech-
niques but it provides more precise quantification of the mismatch.

(a) Model 1 (b) Model 2

Figure 3: Three-cluster data set

Model 1 Model 2
1MEGA-F 0.08100187 0.02810075
2MEGA-F 1.9527672 0.320804925

Table 1: MEGA for both model when trained on the three-cluster data set.

Figure 3 contains both the training observations (in blue) and generated data points
(in red) from both tested LVGM models, Model 1 and Model 2. By looking at Figure 3,
Model 2 seems to have a better fit, mostly because it seems like it captures the true
variance much better.

We computed 1MEGA-F and 2MEGA-F for both trained distributions, the results are
containing in Table 1. The results agree with our intuitive visualisation of the situation.
Though the distribution learned by fitting Model 2 has a first moment that matches
better than training observations than the distribution learning by fitting Model 1, this
di�erence is much more drastic when comparing the second moment of both trained
distributions according to our metric.

We have repeated this small demonstration with a second data set as illustrate in
figure 4.
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(a) Model 1 (b) Model 2

Figure 4: Moon data sets

Model 1 Model 2
1MEGA-F 0.01490262 0.00728456
2MEGA-F 0.07236395 0.00862108

Table 2: MEGA for both model when trained on the moon data set.

We observe similar results using the moon data set as illustrated in Figure 4 and
table 2; the MEGA metric favours the model that visually looks better.

7 MEGA for regularization

As we previously mentioned, based on the principle of Goodhart’s Law, we proposed
to use the proposed metrics 1MEGA-F and 2MEGA-F to compare complex LVGMs such as
IAF-VAEs [17] or NVAEs[30]. In section 3 we discussed some issues with the likelihood as
an evaluation metric in some special cases. Additionally, it is unfair to use likelihood
as a metric to compare two models when one is trained using a likelihood approach
and the other is not.

However, if this metric has some merit when comparing model, why could we not
simply included in the optimization process ? In this section we address the e�ect of
incorporating MEGA as part of the optimization process.

Because the likelihood and the moments reflect di�erent aspects of the distri-
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bution p (x) then incorporating MEGA as part of the optimization process for models
trained by maximum likelihood acts as regularization.

This is easy to see for models with Gaussian emission distribution such as GMMs
and VAEs. To simplify the explanation we will focus on the GMM case for now. When
fitting a single Gaussian distribution with maximum likelihood, we set its parameters
µ and σ to the data mean and the data standard error and thus a single Gaussian
performs very well according to MEGAs. As we increase the number of components k
in a GMM, we increase its likelihood but we also increase its MEGA. This means that we
can use the MEGA as a model selection (or regularization metric) to fit GMM in place
of alternatives such as AIC and BIC in order to get a model that balances likelihood
and moment matching.

One way to do so is to select the model that maximizes:

ll(S ) − α (1MEGA-F +
√

2MEGA-F), (19)

where ll(S ) is the log-likelihood of the data under the fitted model and α is a hyper-
parameter that we manually fixed in the experiments of section 8. Basically in this
particular case, the α parameters interpolated between maximum-likelihood and mo-
ment estimator. Additionally, we can draw an entire regularization path for di�erent
values of α , similar to what is produced when using Lasso [28, 26, 9].

Similarly, we can use a MEGA term in the objective function while training a VAE.
Our proposed metric could again serve as regularization in order to ensure the VAE
model captures those moments by maximizing:

Eq [ln p (x|z)] − KL (q (z|x) |p (z)) − α (1MEGA-F +
√

2MEGA-F). (20)

Arguments have been made in the past [16, 14] that the KL divergence term serves
as a regularizer and that adding a β parameter can provide a way to adjust the strength
of the regularization. Adding a MEGA term to the ELBO should provide a di�erent type
of regularization. The KL divergence term provides regularization for the distribution
q (z|x) and the MEGA term provides regularization for p (x):

Eq [ln p (x|z)]
Reconstruction error

− βKL (q (z|x) |p (z))
Regularization forq (z |x)

− α (1MEGA-F +
√

2MEGA-F)
Regularization forp (x)

. (21)
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As previously demonstrated [6], tunning a VAE to obtain both good reconstruction
and generative performances is di�cult. For instance, when using the β-VAE [14, 13]
we can make the hyper-parameter β arbitrary small and obtain close to perfect recon-
struction but this leads to poor generative performance due to the distribution q (z )

used for training being widely di�erent from p (z ) used for generation. The additional
term we add to the VAE objective function should help with generative perspective of
VAEs.

Thus, to understand the benefits of integrating this additional term to the objec-
tive function we have to understand how di�erent it is from the first term. The first
term measure the reconstruction error because the likelihood p (x |z ) is computed on
latent variable z sampled from q (z |x ). In contrast, the MEGA penalty term evaluate the
first and second moment of p (x ) independently from q (z |x ) but rather based on the
generative model where p (x ) =

∫
z
p (x|z )p (z)dz . We believe this additional constraint in

the objective function should lead to samples that matches the true distribution of
p (x ) more closely.

8 Experiments: regularization

As discussed in section 7 another way to integrate such metric in a workflow is to reg-
ularize LVGMs with Gaussian observation distributions. In the following experiments,
we explore the use of our proposed metric as a regularizer for GMMs and VAEs.

8.1 Regularizer for GMMs

For GMMs, increasing the number of components increases the likelihood and thus
it is necessary to regularize this model; we cannot simply select the ideal number
of components based on the likelihood alone. We have generated a simple data set
from a 3-component GMM. Figure 5 is a scatter of the simulated data, by looking at the
figure we would like the model selection procedure to settle on three components.
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Figure 5: Scatter plot of the simulated data set.

The Akaike Information Criteria (AIC) [2, 1] is a well-establish penalized likelihood
function that can be used to select the number of components in a GMM. The AIC can
be expressed as

AIC = 2p − 2 ln(L), (22)

where L is the likelihood of the model, and p is the number of parameters (p = 2k in
the GMM case). In equation 22 we see a natural tradeo�; −2 ln(L) goes down as we
increase the number of components but 2p goes up. To select the right GMM model,
we can fit multiple GMM with various number of components and we select the model
that minimizes the AIC.

17



Figure 6: AIC plotted against the number of components for trained GMM models
(lower is better).

Based on Figure 6, the AIC is minimized at k = 3 which is concordant the model
used to generate the data.

Next, we use our MEGA-penalized likelihood function described in equation 19 to
select the number of components.

Figure 7: MEGA-penalized likelihood plotted against the number of components for
trained GMM models (higher is better)
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As observed above, when using our proposed metric for GMM regularization we
also obtain a function that favours 3 components, which is concordant with both the
model used to generate the data and the AIC. However, in this instance the flexibility
given by the hyper-parameter α is both a benefit and a drawback. Using the hyper-
parameter, we can easily adjust how strong we want the penalty to be but on the flip
side there are no automated ways to adjust it. As previously mentioned, we can build a
regularization path for di�erent values of α leading to a sequence of possible models
from which the user can select one.

8.2 Regularizer for VAEs

Finally we experiment with using MEGA as a regularization for VAEs. Now that we used
MEGA as part of the objective function we can no longer use it to assess the quality
of the samples so we are forced to visually inspect samples and their parameters.

We run this demonstration on a subset of the MNIST data set [18] that contains
only the digit four. We have experimented with a wide range of parameters α and β ,
as defined in equation 21 and fixed the hyper-parameters to the values leading to the
more realistic-looking images.

Figures 8,9 and 10 illustrate our results. The images on in the left column were pro-
duced by a VAE trained without MEGA and the right one with MEGA. We have included
images of a sample, its mean and its standard deviation.
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(a) Model train without MEGA (b) Model train with MEGA

Figure 8: A sample of 64 images from pθ (x‖z) = N (µ (z),σ (z)) where z ∼ N (0, 1).

(a) Model train without MEGA (b) Model train with MEGA

Figure 9: The 64 sampled mean of the images: µ (z) where z ∼ N (0, 1).
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(a) Model train without MEGA (b) Model train with MEGA

Figure 10: The 64 sampled standard deviation for each pixel of the images: σ (z) where
z ∼ N (0, 1). For those images, the whiter the pixel is the larger the standard deviation
of that pixel is.

The samples are still grainy, and this is due to the pixel-independence assumption
of the simple VAE which only learns individual pixel variance and not a full-covariance
matrix. However, the images generated by a VAE trained with the MEGA penalty seems
to have sharper edges; the contrast between the white of the digit and the black of
the exterior is bigger. This is noticeable in all three figures but mostly in figure 10.
It seems like the MEGA penalty changes rather drastically σ (z), the variance of the
observed distribution. Both the exterior of the digit and the inner part of the digit are
darker than the model trained without MEGA. The model trained with MEGA perceives
the contour and extremities of the digit as the location with higher variability which
is not as prevalent for the model trained without MEGA.

We also notice a bigger variability in the shapes of fours that we are able to gener-
ate, mostly visible in figures 8 and 9. The lack of variability in the left column is most
likely caused by posterior collapse [20, 6], a common problem when using β-VAEs that
the MEGA penalty seems to counteract.

21



9 Discussion

As a comparative metric, MEGA is fast to compute and easy to interpret. The larger
1MEGA is, the larger is the gap between the first moment of trained distribution p (x )

and the empirical first moment of the data set S . Similarly, the larger 2MEGA is, the
larger the gap is for the second moment. This can give us a quick and easy to compare
and evaluate the quality of fitted models.

However, there are still some limitations to this approach. The most obvious is that
the formulation we propose only allow us to quickly evaluate the gap for the first two
moments. This leads to an incomplete comparison of the learned and empirical dis-
tribution which can create some problems in niche cases. A example of this problem
is the high performance of the simple Gaussian distribution. Usually, when fitting a
Gaussian distribution to a data set we set the parameters µ and σ to be the empirical
mean and the empirical, thus the Gaussian mixture with a single component shows
very good results (low MEGA).

Fortunately, we have designed this metric for complex latent variable model and
there are no reasons to use it when assessing the fit of a single Gaussian. Additionally,
other comparative strategies discussed in section 3 can still be used in parallel of our
proposed one.

We also want to point out that if a trained distribution has low MEGA but bad-
looking generated samples this still provides us with insightful information. It indi-
cates that the problem is in the LVGM distribution’s higher moments and our metric
was able to provide us with that information very quickly.

For regularization applications, we were able to successfully used MEGA with two
di�erent LVGMs, GMMs and VAEs. Though in both these cases we managed to achieve
good results, selecting the appropriate constraint using the hyper-parameters was not
an easy task and had to be done heuristically. This is certainly a weakness that should
be addressed in future work.

Let us now discuss some of ongoing work. We are currently working on a general-
ization of MEGA. We want to extend our metric not only to higher moments of x but
to any functions g (x). This would not only allow us to compare the skewness of the
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trained model compared to the data but also more complicated properties of distri-
butions such as multimodality. This generalized MEGA would provide a more complete
evaluation of models than the currently proposed metric.

Because we believe our theoretical arguments to be quite solid, the experiments
above are a quick showcase of possible applications of the MEGA metric, they serve
as a proof of concept rather than exhaustive tests. However, some components of
our experiments were done heuristically and more thorough test should be done to
broaden our understanding of the possible applications of our metric.

10 Conclusion

In this article we have introduced a fairly simple, easy and computationally fast way
to check the generative model’s distribution of a large class of LVGMs. This metric,
MEGA, evaluates the gap between the LVGM distribution first and second moment and
the training (or validation) data set first and second moment.

The premise of the proposed metric is theoretically simple and quite intuitive. Both
the DE and the FME are unbiased estimators of both the first and the second moment
and if a gap exists between them then the LVGM distribution does not match key
aspects of the data distribution.

To support our theoretical arguments, we have demonstrated how to use this metric
for two di�erent purposes. First, as an evaluation metric that can replace the more
heuristics approaches that rely on eyeballing generated samples. Second, since this
metric is currently available for the first two moments, it favours a simple model, such
a single Gaussian, and thus can be used as regularization for models such as GMMs
and VAEs.

However, we believe we have only scratched the surface of all of the applications
and ways to incorporate these moment-gap-based metrics in model fitting and model
selection pipelines. We hope to make further progress in this direction in future work.
Another future work direction is to extend these moment gap estimators to sequential
LVGMs, such as Hidden Markov Models and State-Space Models. Finally, the biggest
improvement we could work on is to extend the moment estimators to higher mo-
ments; this would make the evaluation metrics much more valuable.
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Nonetheless, we believe this work is a first step in data-driven automated model
selection and we hope it inspires similar contributions.
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Appendices

Proof that the FME has small variance than the SE

First moment

For the SE, we first sample z1, ...zm , a set of m latent variables where z ∼ p (z) then
sample x1, ..., xm with xi ∼ p (x|zi ); this implies that x ∼ p (x|z)p (z) = p (x). Then, the SE for
the first moment is 1

m

∑m
i=1 xi .

Varx (SE) = Varx
(∑m

i=1 xi

m

)
=

1

m2

m∑
i=1

Varx (xi ) =
Varx (x)
m

. (23)

When building our FME, we sample z1, ...zm , a set of m latent variables where z ∼ p (z)
and then compute 1

m

∑m
i=1 Ex (x|z = zi ).

Varz (FME) = Varz
(∑m

i=1 Ex (x|zi )
m

)
=

1

m2

m∑
i=1

Varz (Ex (x|zi )) =
Varz [Ex (x|zi )]

m
. (24)

Then using the Law of Total Variance we have that:
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Varx (x) = Ez [Varx (x|z)] + Varz [Ex (x|z)]

≥ Varz [Ex (x|z)]

⇒ Varx (x)
m

≥ Varz [Ex (x|zi )]
m

(25)

⇒ Var(SE) ≥ Var(FME),

and thus our FME has lower variance than the commonly used alternative.

Second moment

For the SE, we first sample z1, ...zm , a set of m latent variables where z ∼ p (z) then
sample x1, ..., xm with xi ∼ p (x|zi ); this implies that x ∼ p (x|z)p (z) = p (x). Then, the SE for
the second moment is 1

m

∑m
i=1 x2i .

Varx (SE) = Varx
(∑m

i=1 x
2
i

m

)
=

Varx (x2)
m

. (26)

When building our FME, we sample z1, ...zm , a set of m latent variables where z ∼ p (z)
and then compute 1

m

∑m
i=1

(Varx (x|z = zi ) + [Ex (x|z = zi )]2
) .

Varz (FME) = Varz
(∑m

i=1

(Varx (x|z = zi ) + [Ex (x|z = zi )]2
)

m

)
=

Varz
(Varx (x|z = zi ) + [Ex (x|z = zi )]2

)
m

. (27)

Now let’s take a closer look at the numerator of equation (27).

Varz
(
Varx (x|z = zi ) + [Ex (x|z = zi )]2

)
= Varz

(
Ex [x2 |z] − Ex [x|z]2 + Ex [x|z]2

)
= Varz

(
Ex [x2 |z] − Ex [x|z]2 + Ex [x|z]2

)
= Varz

(
Ex [x2 |z]

)
= Ez

(
Ex [x2 |z]2

)
− Ez

(
Ex [x2 |z]

)2
(28)

= Ez
(
Ex [x2 |z]2

)
− Ex

(
x2

)2
⇒ Var(FEM) = Ez

(Ex [x2 |z]2) − Ex
(x2)2

m
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Finally, let us apply the Law of Total Variance to x2:

Varx (x2) = Ez (Varx [x2 |z]) + Varz (Ex [x2 |z])

= Ez (Varx [x2 |z]) + Ez
(
Ex [x2 |z]2

)
− Ez (Ex [x2 |z])2

= Ez (Varx [x2 |z]) + Ez
(
Ex [x2 |z]2

)
− Ex [x2]2 (29)

⇒ Varx (x2) ≥ Ez
(
Ex [x2 |z]2

)
− Ex [x2]2

⇒ Varx (x2)
m

≥
Ez

(Ex [x2 |z]2) − Ex [x2]2
m

⇒ Var(SE) ≥ Var(FME)
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