
NEURAL NETWORKS WITH FUNCTIONAL RESPONSES

Sidi Wu, Cédric Beaulac & Jiguo Cao
Department of Statistics and Actuarial Science, Simon Fraser University

NEURAL NETWORKS WITH FUNCTIONAL RESPONSES

Sidi Wu, Cédric Beaulac & Jiguo Cao
Department of Statistics and Actuarial Science, Simon Fraser University

Introduction

In functional data analysis (FDA), the regression of
a functional response on a set of predictors can be
a challenging task, especially if the relation between
those predictors and the response is nonlinear. In
this work, we adapt neural networks, a machine
learning technique, to solve this problem.

We design a feed-forward neural network (NN)
to predict functional curves with scalar inputs, using
the following procedure:
1. Transform the functional response to a finite-

dimension vector of coefficients;
2. Construct a NN with those coefficients as outputs

and the scalar predictors as inputs;
3. Train the NN using proposed objective functions;
4. Predict the functional response using NN outputs.

Basic Assumptions

Suppose we have N subjects, and for the i-th
subject, the input is a set of scalar variables
X i = {Xi1, Xi2, ..., XiP}, and the output is a
functional variable Yi(t), t ∈ T in the L2(t) space.
Note: In reality, Yi(t) is usually measured in a
discrete manner, for instance, at mi time points or
locations, with some observation error.

Representations of Functions
(Dimension Reduction)

- Mapping to basis coefficients -

In FDA, it is common to represent functions using
basis expansion, where the information of Yi(t) can
be summarized into a set of finite-dimensional vector
of basis coefficients as:

Yi(t) =

K∑
k=1

cikθk(t) = θ′C i (1)

•θ: vector of the basis functions θ1(t), ..., θK(t) from
a selected basis system, e.g. Fourier or B-spline

•Ci: vector of the basis coefficients {cik}Kk=1
•K: some pre-defined truncation integer

- Mapping to FPC scores -

The other popular method for dimension reduc-
tion is functional principal component analysis
(FPCA). Let µ(t) and K(t, t′) be the mean and
covariance functions of Y (t), and accordingly,
K(t, t′) =

∑∞
k=1 λkϕk(t)ϕk(t

′), where {λk, k ≥ 1} are
the eigenvalues and ϕk’s are the corresponding
eigenfunctions satisfying

∫
ϕ2
k(t)dt = 1.

Denote Ỹi(t) = Yi(t)−µ(t) as the centered functional
response, following the Karhunen-Loéve expansion,
Ỹi can be approximated as:

Ỹi(t) =
K∑
k=1

ξikϕk(t) = ϕ′ξi (2)

•ϕ: vector of the first K functional principal compo-
nents (FPCs)

• ξi: vector of the FPC scores {ξik}Kk=1, where ξik =∫
{Yi(t)− µ(t)}ϕk(t)dt

• K: the truncation integer determined by the desired
proportion of variance explained

NNBB & NNSS

- NN for Basis Coefficients (NNBB) -

Given Eq.(1), learning how X ’s regress on Y (t) can
be naturally replaced with learning how X ’s regress
on basis coefficients {ck}Kk=1. Hence, we set {ck}Kk=1
to be a function of X ’s, with a mapping function F (·)
from RP to RK, as:

C i = F (Xi) (3)

Eq. (3) can be extended to the mapping from X to
the functional response Y (t) as Yi(t) = θ′F (X i).

Then we propose to apply a dense feed-forward NN
as the mapping function F (·), where the basis
coefficients [ci1, ci2, ..., cik] ∈ Rk are the outputs of the
NN. The model can be expressed as:

C i = NNη(X i) = gL

· · · g1

 P∑
p=1

w1pXip + b1

 (4)

• g1, ..., gL: the activation functions at each layer
• η: NN parameter set consisting of weights {wℓk}Lℓ=1
and bias {bℓ}Lℓ=1 of all hidden layers

NNη(·) is optimized by minimizing the objective
function:

LC(η) =
1

ntrain

ntrain∑
i=1

K∑
k=1

(ĉik − cik)
2 (5)

where ntrain is the no. of samples in the training set,
and cik’s are obtained following Eq.(1).

- NN for FPC Scores (NNSS) -

Similarly, we can use FPC scores to represent Y (t)
and be the outputs of the NN, and we obtain:

ξi = NNη(X i) = gL

· · · g1

 P∑
p=1

w1pXip + b1

 . (6)

and NNη(·) is trained w.r.t. the objective function
LC(η) =

1
ntrain

∑ntrain
i=1

∑K
k=1(ξ̂ik − ξik)

2.

NNBR & NNSR

We further propose to modify the objective function
to directly minimize the prediction error of the
response variable:

LY (η) =
1

ntrain

ntrain∑
i=1

m∑
j=1

(Yi(tj)− Ŷi(tj))
2. (7)

Note: Eq.(7) is implementable because the relation
between Ŷi(t) and Ĉ (or ξ̂) is linear, thus we can
easily compute the derivative of Ŷi(t) as well as the
gradient of (Yi(t)− Ŷi(t))

2 with respect to Ĉ (or ξ̂).

NNBB (or NNSS) trained by minimizing Eq.(7) is
named NNBR (or NNSR), and can be treated as a
NN with an extra output layer, where the final output
is the weighted sum of the original outputs.

A graphical representation of the proposed neural network with an extra
output layer (L = 2, P = 3, K = 4).

More Extensions

Eq.(7) can be further modified for different needs:
• Irregularly-spaced functional data

LYirr(η) = LY (η) · 1 (Yi(tj) is observed) (8)

• Smoothness control for Ŷ (t)

Lpen(η) = LY (η) + λ

K∑
j=3

(∆ck)
2 (9)

where ∆2ck = ck − 2ck−1 + ck−2 is the difference of
a set of consecutive basis coefficients.

Implementation

- Data & Models for Comparison -

• Data: generated by

Y (tj) =
10∑
k=1

ξk(X)ϕk(tj) + ϵ(tj), j = 1, ..., 40

–X = {X1, ..., X10}: vector of random predictors
– ξk(·): nonlinear functions for some k

–ϕk(·): B-spline basis functions
– ϵ(·): random noise function

• Models: Function-on-scalar regression model
(FoS), NNBB, NNSS, NNBR & NNSR

- Results -

• Prediction Accuracy
Methods FoS NNBB NNSS NNBR NNSR

Mean 24.5373 3.8478 5.7422 1.1548 1.7862
Std. Dev. 0.7632 0.7914 0.2055 0.0958 0.0810
p-value - <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

Table of Mean(SD) of MSE between Y (t) and Ŷ (t) for various models
in test sets (20%), along with the p-values of the two-sided paired
t-test of MSE of NN-based model comparing that of FoS, given 20

different training iterations.

• Relation Reconstruction

Visualizations of true ϕ6(t) (top left), ϕ̂6,FoS(t)(top right), ϕ̂6,NNBB(t)

(bottom left), and ϕ̂6,NNBR(t) against X6 (bottom right), respectively.

Summary

- Highlights-

• Have superior predictive power, especially when
the relation between the predictors and the
response are non-linear.

• Flexible for both regularly or irregularly spaced
functional data.

• Can handle a large number of predictors.

- Limitations -

• Contain many hyper-parameters and the tuning
process is time-consuming.

- Potentials -

• Extend to predict a multi-dimensional (mainly
two-dimensional) functional response.

• Combine with existing NN with functional inputs
to construct NN architectures for both functional
predictors and functional responses.

References
[1] J. O. Ramsay and B. W. Silverman. Functional Data Analysis (Second Edition). Springer, 2005.

[2] Fabrice Rossi and Brieuc Conan-Guez. Functional multi-layer perceptron: a non-linear tool for functional data analysis. Neural Networks, 18(1):45–60, 2005.

[3] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.

Contact information:
Sidi Wu

sidi_wu@sfu.ca


