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leage data

L Introduction

Image data

Images are natively captured and stored in a matrix format since
cameras went digital.

The element (i, ) represents the color intensity at pixel [/, j].

For black and white or grayscale images, the color intensity is an
integer in the range [0, 255].

For a color image, it is represented with 3 matrices of integer
elements in [0, 255].
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|—Introduction

Image data

For black and white or grayscale images, it is an integer in the

range [0, 255].

255 255 0 255
255 0 0 255
255 255 0 255
265 255 0 255
255 0 0 O

255
255
255
255
255

Matrix representation (pixel color

Black and white image of the

intensity
digit '1’ )
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Image data analysis

Typical approaches for image analysis are designed to analyze these
matrices.

Filtering and convolution are matrix operators that perform linear
combinations of neighboring pixels.

Powerful predictive models can be built by learning convolution
weights within broader machine learning models.
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Image data analysis

Even though these approaches can perform extremely well in
predictive tasks, pixel-based approaches have several issues.

» Problem with interpretation.
» Large data (high-resolution videos).
» Generalization issues (sensitivity to resolution and technology).
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Our solution

We want to stop looking at images as a collection of pixels.

Instead, images are analyzed as a collection of objects, defined by
their shapes, textures, and colors.

Our journey begins with shapes: how to extract them from images
and how to analyze them.
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Edge and contour detection

The first step to analyse shapes in images is to extract them.
For this, we use contour detection techniques.

Edge and contour detection can provide us with flood fill images
(or masks).

This is not an easy task.
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Edge and contour detection

Photo of a bat. Mask image.
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Edge and contour detection

Starting with flood fill images.

We seek to extract a functional form for the contour (planar closed
curve), represented via coordinates:

C(t) = (X(t), Y (1)),

where t € [0, 1] represents the proportion of the curve that has
been traveled from the start (t = 0) to the end (t = 1).

For closed curves C(0) = C(1).
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Traveling along the contour

We need to travel along those pixels in an orderly way.

The marching square algorithm (Mantz et al. 2008) will provide us
with an ordered sequence of pixels:

[(x[1, ¥ 121), (x[2], y[21); - (X[ T ¥ [ TT)] (1)

Starting from the top-right of the contour (this is important).
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Traveling along the contour

w50

X &4
= 00 02 04 06 08 10
t
Y §4
T T T T T 84
100 20 300 00 500
Y

200
L

Contour of the bat.

250
L

15/82



A Functional Framework for Image Analysis
LEdge and contour detection

Functional data analysis

16 /82



A Functional Framework for Image Analysis
LFunctionaI data analysis

Functional data analysis: An introduction

Functional data analysis (FDA) (Ramsay & Silverman, 2005) is a
field of statistics focused on studying data sets of functions.

Supervised learning problem examples:

» In regression problems, functions can be predictors:
> yi=a+ [rB(t)xi(t) dt + e
P or responses:

> yi(t) = u(t) + ai(t) + &i(t)
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Functional data analysis: An introduction

Unsupervised learning problem examples:

» Functional principal component analysis (FPCA) allows us to:
» project functions to a low-dimensional representation,

» and identify regions of high variability across data points.

In summary, many statistical analyses defined for continuous and
categorical variables can be applied to functional variables.
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Smoothing observed functional data

» Data are naturally collected and stored in a discrete manner:
x[t] = x(t) + &.

» A common approach is to reconstruct the function before
analysis.

» To estimate the smooth function x(t), t € (0,1), we smooth
the discrete data x[t] using a basis expansion.

» Examples include B-spline expansions and Fourier expansions.
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Functional representation of the contour

We use basis expansion to smooth the coordinate paths obtained
with marching square.

It gives us a smooth, continuous and parametric representation of
the contour.

We can use multivariate FDA approaches to solve statistical
questions about the shapes.
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25 /82



A Functional Framework for Image Analysis
LFunctionaI data analysis

Shapes and statistics

So what about repetition and data sets?

With repetition, different rotations and scales of the same object
lead to completely different coordinate functions.

This starting point of the coordinate paths is arbitrary with respect
to shape features.
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Shapes and statistics

Contours need to be aligned first in order for the statistics to be
meaningful.
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Functional contour alignment

A shape is invariant with respect to translation, scaling and
rotation.

We extrated the contour not the shape.
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Functional contour alignment

In order to obtain a sample of shapes, we must estimate and
remove the effects of deformation variables.

These are:
» Translation

» Scale
> Rotation
» Path starting point (parameterization)
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Functional contour alignment

Existing work in shape analysis (Srivastava & Klassen, 2016)
projects contours onto a tangent space.

This removes the effect of the deformation variables.

However, this would prevent the statistical analysis of these
variables.

What if the size of the object has statistical meaning?
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Functional contour alignment

The alignment procedure we propose estimates these deformations,
allowing for their analysis.

It also allows the removal of their effects to analyze what remains:
the shape.
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Functional contour alignment

The resulting contour we observed is parameterized as:

C(t)=p0Cox(t)+ T (2)

where (p, 0,7, T) are the deformation parameters and C(t) the
shape.
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L Functional contour alignment

L_Scale and translation

Estimating the scale and translation

Estimating T; = (T, T,) and p; is rather simple.

If we want shapes to be centered at (0,0) and to have unit norm,
this means that:

/01 X(t)dt = /01 Y (t)dt =0

- 1, 1
HCHH:/ Xz(t)dt+/ Y2(t)dt =1
0 0
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L_Scale and translation

Estimating the scale and translation

It makes estimation T; and p; easy:

1
T,':/ C,‘(t)dt
0
pi = [|Ci — Tilln

This is extremely quick and can be done shape by shape
independently.
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L_Scale and translation

Estimating the scale and translation

After we estimate the translation and scale deformation, we obtain
C*, which we call the pre-shape:
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L Functional contour alignment

|—Reparameterization and rotation

Estimating the reparameterization and the rotation

The biggest challenge when developing our proposed approach.
The effects of these deformations are entangled.

We need to estimate both at the same time.
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|—Reparameterization and rotation

Starting point (reparameterization)

The reparameterization -y is a simple wrapping function that
parameterize the effect of different starting point when traveling
along the contour.

We define v € I', with

I = {y5(t) = mod(t — §,1),t € [0,1],6 € [0,1]}
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LFunctional contour alignment

I—Reparameterization and rotation

Starting point (reparameterization)

we can visualize the effect of this function here:

Vs Cos X0 Yo
/ A /\: o H"f\\ AV/\\\
§=
/ YN J,»’A\\ ANVA
%) [ (WY [aV
6=05
/ L/\/\ : AvA ;
0 =0.65

39/82



A Functional Framework for Image Analysis
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|—Reparameterization and rotation

Reparameterization

Because we analyze closed curves, the coordinate functions are
cyclical.

The 0 parameter dictate where on the contour did we begin
traveling.
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L Functional contour alignment

|—Reparameterization and rotation

Reparameterization

One might think that we can wrap the functions until they are
aligned.

But the coordinate functions are entirely different for different
rotations.

These deformations must be estimated jointly.
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Effect of the rotation on the coordinate functions
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|—Reparameterization and rotation

Rotation

The rotation O of the pre-shape is parameterized with a standard
rotational matrix:

_ ~ _ [cos(8) —sin(B)
0=0,= (sin(&) cos(6) >

The problem boils down to estimating 6.
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|—Reparameterization and rotation

Estimating the reparameterization and the rotation

The first step to align the pre-shapes C* is to define a template p.
The reparameterization or rotation do not really matter as long as
they are the same for all pre-shapes.

The template can be:
» A random observation C;.
» Some version of the Karcher/Frechet mean.

> A specific observation aligned as desired.
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|—Reparameterization and rotation

Estimating the reparameterization and the rotation

Given a template p, we seek to align the pre-shape C’ by finding
the parameters § and 6 that aligns the best C7 to pu.

(é, 3) = arg min [|0gCF 0 vs — ,uH%{ (3)
(6,6)€[0,27]x[0,1]
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|—Repar:-:meterization and rotation

Estimating the reparameterization and the rotation

Solving equation 3 is difficult.

However, representing the pre-shape C* and the template p using
the Fourier basis expansion has multiple benefits.

> Leads to a nice solution for the estimation of T and p

» Leads to a solution for the rotation/reparameterization of the
form 6 = £(0) (and inverse)

The use of Fourier basis expansion was fundamental in solving
equation 3.
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|—Reparameterization and rotation

Estimating the reparameterization and the rotation

Having a way to express 4 as a function of § means that we can
solve the alignment issues by

» Searching on a grid (for 0) for an optimum value

» Developping an iterative algorithm (ICP-like) that updates
both parameters every other steps.

After removing all of the deformation variables; we are left with
the shape C.
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|—Reparameterization and rotation

Estimating the reparameterization and the rotation

After removing all of the deformation variables; we are left with
the shape C.

(1) = ;(cm -7
C(t) = 05C*(t) o ys)
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|—Alignment results

Alignment results

Before we go over the statistical analysis we conduct on shapes; let
us make sure the alignment procedure works.

We deformed shapes and realigned them (simulations).

We also aligned real data.
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|—Alignment results

Alignment on simulated data

o | MSEs MSEy MSE+ MSE,
0.01 [ 3.39x107% 341 x10% 998 x 1032 1.80x 1032
0.1 [3.15x107* 3.15x10~* 6.34x 10732 1.81 x 10732

Table: MSE of the estimated parameters for the different scenarios and
values of o
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L Functional contour alignment

L Alignment results

Alignment on real data

MPEG-7 database:

Figure: Examples of images from the database for the butterfly and fork
objects.
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Functional shape analysis

» So far, we have not done any statistics.

» We needed to prepare the data so that the statistical analysis
is meaningful.

» At this point, we can consider multiple statistical problems
related to shape and analyze both deformation variables
(scalar) and shapes (functional) jointly.
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Lshape analysis : applications

L Unsupervised learning

Modeling X through a joint PCA approach

We propose a joint Principal Component Analysis (PCA) approach.

We extract features that can be used for both unsupervised and
supervised learning problems.

We can consider multiple statistical problems related to shape and

analyze both the deformation variables (scalar) and the shape
(functional).
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LShape analysis : applications

L Unsupervised learning

Functional Principal component

PC1 (57%) PC2 (22%) PC3 (9%)

Figure: Plots of the estimated mean function z = E,‘Zil in black, of
Z — 20¢, in blue and of Z 4 20¢, in red, for k = 1 (first column), k = 2
(second column) and k = 3 (third column).
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L Generation

Generation
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Figure: Butterfly curves generated with our approach with the

deformation parameters.
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LShape analysis : applications
L Classification

Classification: Melanoma detection based on moles shape

» HAM10000 dataset contains photos of moles.

» We trained a model on 8000 images with two labels:
melanoma or benign.

» Our goal was to compare the performance of a shape-based
model against a pixel-based one.
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LShape analysis : applications
|—Classification

Classification: Melanoma detection based on mole shapes

ROI PCA image (min-max normalized) Otsu's thresholding Masked cleaned

r-" YE
S’ BN

Figure: Segmentation pipeline.
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L Classification

Classification: Melanoma detection based on mole shapes

Model avg-AUC avg-Bal.Accuracy avg-F1

Shape 0.640 4+ 0.031  0.572 £+ 0.036 0.837 + 0.020
Pixel  0.697 £+ 0.069  0.544 £ 0.049 0.814 + 0.016

Table: Stratified-Nested-CV Results overview.
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LShape analysis : applications
L Classification

Classification: Melanoma detection based on mole shapes

Model VRAM (GB) avg-Training time (s)

Shape 0.7 31.7 + 6.92
Pixel 66.7 174 £ 82.9

Table: Stratified-Nested-CV Results overview.
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|—Multiple shapes

Multiple shapes

A second project extends our approach to consider multiple shapes
in a single image.

This is to better represent realistic objects.

This forced us to question the alignment procedure and how to
consider deformation variables.
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|—Multiple shapes

Multiple shapes

Applications on X-rays used to identify patients with cardiomegaly.

Overall the idea is to consider deformation variable to be global
and affect all shapes the same way.

This then capture relative differences in the shapes C
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Multiple shapes

67 /82



A Functional Framework for Image Analysis

LE><tensions

L Multiple shapes

Multiple shapes
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LMultiple shapes

Multiple shapes: alignment results
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LE><tensions

|—Neural network integration

Neural network integration

Shapes and deformation parameters can be input or output of
neural networks for non-linear learning.

Can also be input in recently developed functional layers.

Can be added in current pipeline has an additional representation
of images in tandem of pixel representation.
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Current development: Images as surface

We model images as surfaces and pixels as a grid of samples over
that surface.

» We can recover a smooth surface with tensor-product
P-splines.
» Dramatically reduce the dimension of the image.

Can quickly change the resolution using non-linear
interpolation.

» Quick computation of derivatives needed for edge-detection.

72/82



A Functional Framework for Image Analysis

LCu

rrent development

Current development: Images as surface
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Current development: Images as surface

Original Image, 612 x 382
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Conclusion

Statistical shape analysis can provide new information about
images useful in unsupervised and supervised analysis.

On their own, shapes can provide interpretable information lost in
pixel-based approaches.

In order to analyze the underlying shapes of objects, we developed
an alignment procedure.

Thus we can also include deformation parameters in analysis.
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Conclusion

We are also working on a vast R package to cover shape analysis
end-to-end.

Treating images as surfaces can improve the shape extracted from
images but can also bring a new perspective on image analysis.

Provide a parsimonious representation with multiple benefits and
almost no cons.
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| would love to answer your questions.
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Alignment on real data: deformations

Figure: Plots of the estimated deformation parameters of each curve in
both datasets
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Breaking down the procedure

Edge/contour detection for a collection of images.
Extract an ordered list of pixels.
Learn a functional representation for both coordinates.

Estimate deformation parameters.

vV V. VvV Vv Y

Remove the deformations to obtain the shape as two
univariate functions.

> Statistical analysis of the deformation variables and shapes.

81/82



A Functional Framework for Image Analysis
LConcIusion

Multiple shapes: classification results

Classification accuracy with linear functional model:

LA GL GFUL PCR PLS
82.7 828 828 83.1 859
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