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Abstract

The shape X̃ of a random planar curve X is what remains after removing defor-
mation effects such as scaling, rotation, translation, and parametrization. Previous
studies in statistical shape analysis have focused on analyzing X̃ through discrete ob-
servations of the curve X. While this approach has some computational advantages, it
overlooks the continuous nature of both X and its shape X̃. It also ignores potential
dependencies among the deformation variables and their effect on X̃, which may result
in information loss and reduced interpretability. In this paper, we introduce a novel
framework for analyzing X in the context of Functional Data Analysis (FDA). Basis
expansion techniques are employed to derive analytic solutions for estimating the de-
formation variables such as rotation and reparametrization, thereby achieving shape
alignment. The generative model of X is then investigated using a joint-principal com-
ponent analysis approach. Numerical experiments on simulated data and the MPEG-7
database demonstrate that our new approach successfully identifies the deformation pa-
rameters and captures the underlying distribution of planar curves in situations where
traditional FDA methods fail to do so.

1 Introduction

The analysis of images has become increasingly important with advances in storage and
acquisition technologies, making them widely used in the scientific and industrial domains.
Representing images as matrices, where each pixel encodes grayscale intensity or RGB values,
has enabled modern deep learning methods to achieve outstanding performances for several
learning tasks, including generative modeling (see e.g. Oussidi and Elhassouny (2018) for
a review). However, this matrix-based representation does not explicitly capture the main
aspect of images: the objects they depict are characterized by their shapes and textures. This
is a major drawback, as the estimation of image distributions is done through an extremely
opaque architecture and at a high computational cost, making these methods unsuitable for
interpretable analyses or learning with few observations.

To address this issue, we propose shifting the focus from pixel-based analysis to the
study of shapes represented in images. In particular, we focus on the silhouette X, which
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represents the envelope or contour of the main object in the image. This variable can be
seen as a random parametric planar curve:

X(t) =

(
X(1)(t)
X(2)(t)

)
,

where t ∈ [0, 1] represents the proportion of the curve that has been traveled from the start
(t = 0) to the end (t = 1) and X(1), X(2) are the coordinate functions. Moreover, if the
contour of the image is closed, then we have X(0) = X(1) ; we focus on this setup in this
work. Figure 1 illustrates the pipeline for extracting the planar curve X from an image.

(a) (b)

(c) (d)

Figure 1: From an image to the planar curve X: (a) original image (nl, 2020), (b) binarized
image, (c) contour of the object in the image, and (d) the coordinate functions X(1)(t) and
X(2)(t). The red arrow in (c) indicates the starting point and the orientation of the traveling
used to obtain the coordinate functions in (d).

The random planar curve X is assumed to be the deformed version of a latent variable
X̃:

X(t) = ρOX̃ ◦ γ(t) +T, t ∈ [0, 1], (1)

where (ρ,O,T, γ) are the deformation variables and X̃ is the shape of X in the sense of
Kendall (1989), i.e, what remains when all deformations are discarded. The deformation
variables transform X̃ to X by the action of scaling (ρ ∈ R+), translating (T ∈ R2), rotating
(O ∈ SO(2)) and reparametrizing (γ ∈ Γ, where Γ is a space of reparametrization functions
from [0, 1] → [0, 1]).

Studying X has been the matter of the shape analysis community. They usually consider
a collection of discrete observations along the curve X. In early work, scientists chose this
finite number of points and saw them as ”landmarks”, i.e., points of correspondence on
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each object that match between and within populations (Dryden and Mardia, 1998). These
approaches neglect the continuity of the contour’s object and introduce subjectivity while
choosing the landmarks. Modern approaches consider X as a planar curve (see e.g Younes
(1998)). In this case, the authors of Srivastava et al. (2010) and Srivastava and Klassen
(2016) have established a flexible framework based on elastic distance ideas to study X̃ with
observations ofX, assuming that deformation variables are nuisance. In estimating γ and the
rotation matrix O, they used discrete observations of X through a dynamical programming
approach. This method also leads to an arbitrary choice: which points should be considered
in the algorithm.

In this paper, we propose a functional data approach to study the random planar curve
defined in equation (1). In particular, X is seen as a bi-variate functional variable taking
values in H = L2([0, 1])×L2([0, 1]), where L2([0, 1]) is the set of squared integrable functions.
Realizations of the variable X are then functional data.

Functional Data Analysis (FDA) has been an active research domain in statistics since
the pioneering work of Ramsey and Silverman (2005). Random shapes form a particular
class of functional data that lie in a non-linear manifold. In Stöcker et al. (2023), the
authors studied them as covariates in generalized additive regression models. However, the
set of deformations considered that act on X̃ does not include reparametrization functions.
Some research has specifically examined the distribution of shape variables within the FDA
framework (see e.g Dai and Müller (2018), Dai (2022)). Nevertheless, to the knowledge of
the authors, the problem of jointly estimating all the deformation variables and proposing a
model for X has not been explicitly addressed in the FDA community.

A naive approach would be to ignore all these specificities and consider X solely as
a multivariate functional variable. This assumes that the variable we study is a vector
of d ≥ 2 dimensions, where each component X(j) is a functional random variable for j =
1, . . . , d. However, using this prism might be ineffective in correctly estimating the generative
distribution of X since most methodologies rely on linear approaches, such as multivariate
functional principal component analysis (see e.g. Happ and Greven (2018), Jacques and
Preda (2014)).

For illustration purposes, Figure 2 depicts realizations of X and their sample mean. The
left column displays planar curves, while the corresponding coordinate functions are shown
in the middle and right columns. The first row presents a sample of n = 10 ”heart” planar
curves exhibiting variations in rotation and reparametrization and the second row shows the
estimate of the mean function E(X) ∈ H which is defined by its coordinate-wise expectation:

E(X(t)) =
(
E(X(1)(t)) E(X(2)(t))

)⊤
.

As illustrated in the figure, this definition fails to preserve the ”heart” silhouette. This
highlights the issue of applying linear approach directly to the planar curves.
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Figure 2: Examples of observations of X (first row) and their sample mean (second row).
Columns present the planar curves, the first and the second coordinate functions, respec-
tively.

A similar problem occurs when alignment is not addressed for a univariate functional
variable X taking values in L2([0, 1]). In this case, X can be expressed as:

X = X̃ ◦ γ,

where γ is a warping function and X̃ represents the curve without phase variation. Hence,
obtaining the shape X̃ from X can be viewed as a generalization of the alignment procedure
for univariate functional variables to the bivariate case. In the univariate case, this problem
has been the source of many developments in FDA (see Chap.7 in Ramsey and Silverman
(2005) and Marron et al. (2015) for a review). For example, in Tucker et al. (2013) a
flexible generative model of X is proposed. This method relies on a joint functional principal
component analysis of bijective transformations of X̃ and γ, inspired by the square-root
velocity framework. Using a transformation of γ ∈ Γ is mandatory due to the complex
structure of Γ, defined in this case as a space of diffeomorphism functions. Happ et al.
(2019) discuss several choices of transformations, comparing their relative advantages and
drawbacks. They found that square-root velocity inverse transformations might lead to
warping functions with atypical structures, making them hard to interpret.

In this paper, we consider the following space of reparametrization functions

Γ = {γδ(t) = mod(t− δ, 1), t ∈ [0, 1], δ ∈ [0, 1]} , (2)

where mod(·, 1) is the modulo 1 function. It is thus assumed that each reparametrization
function is uniquely characterized by its ”starting point” δ ∈ [0, 1]. The motivation for
choosing this particular space is discussed in Section 2.1.

An appealing aspect of considering the space Γ defined in (2) is that when representing the
planar curve X as a finite Fourier series, the estimation of the reparametrization function
and the rotation matrix can be reformulated as an optimization program related to the
Procrustes problem (Schönemann, 1966). Although Fourier functions have been the source
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of several investigations in the shape analysis community to summarize the shape (see e.g.
Chap.6 in Burger and Burge (2009)), our approach proposes a novel framework that uses
these functions to define a basis expansion. Indeed, in the spirit of functional data analysis,
they are used to recover the functional form of each discretely observed realization of X.

In summary, the main contributions of this work are as follows:

• A functional data-based procedure to estimate the deformation variables from a bi-
variate random planar curve X. This method exploits the propriety of the Fourier
basis functions coupled with the set of reparametrization functions when the variations
are consequences of different starting points.

• A novel modelization for X that explicitly accounts for the deformation variables
through a joint principal component analysis (PCA): one is done on the aligned func-
tional variable (ρX̃) and the other on the remaining deformation variables.

The remainder of the paper is organized as follows. Section 2 focuses on estimating
the deformation variables while Section 3 introduces a generative model for X. Numerical
experiments on simulated data are presented in Section 4 followed by an application of
our approach to the MPEG-7 database in Section 5. Finally, the paper concludes with a
discussion in Section 6. The appendix contains additional figures related to the real data
analysis of Section 5 and proofs of the theoretical results.

2 Alignment of planar closed curves

Let X be a functional variable taking values in H = L2([0, 1])×L2([0, 1]), such that X(0) =
X(1), and defined as in model (1). Note that H is a Hilbert space with the inner product
⟨, ⟩H:

⟨f , g⟩H =

∫ 1

0

f (1)(t)g(1)(t)dt+

∫ 1

0

f (2)(t)g(2)(t)dt, f , g ∈ H.

The first step in analyzing a dataset of planar curves is to align the data, meaning to
extract the shape X̃ from X or, equivalently, to identify the deformation variables in model
(1). We formulate the following hypothesis regarding these deformation variables:

• ρ is a positive random scalar variable;

• T = (T1, T2)
⊤ is a random vector of dimension 2;

• The rotation matrix

O = Oθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
depends on a random angle θ in [0, 2π]. Note that the case of the reflection matrix Rθ

can be considered using the propriety:

Rθ = Oθ

(
1 0
0 −1

)
.

This reduces to analyzing (X(1),−X(2))⊤ in our framework instead ofX = (X(1), X(2))⊤.
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• The reparametrization function γ takes values in Γ, where Γ is defined as in (2).

• The random function X̃ takes values in S∞ = {f ∈ H, ∥f∥H = 1}, where ∥·∥H
is the norm induced by ⟨, ⟩H. For identification purposes, we will also assume that
X̃ = (X̃(1), X̃(2))⊤ is centered, i.e.∫ 1

0

X̃(1)(t)dt =

∫ 1

0

X̃(2)(t)dt = 0.

Before presenting our alignment method, we first provide the intuition behind the defi-
nition of the function space Γ.

2.1 The space of reparametrization functions Γ

Recall that we define the space of reparametrization functions as

Γ = {γδ(t) = mod(t− δ, 1), t ∈ [0, 1], δ ∈ [0, 1]} ,

where we recall that mod(x, 1) = x − ⌊x⌋,∀x ∈ R. Functions that belong to this space can
be seen as a generalization of the well-known time-shift deformation warping functions for
univariate functional data (see e.g. Marron et al. (2015) for details) to the case of planar
closed curves. The modulo function allows to consider the cyclic nature of X.

Remark. In some context, it might be of interest to consider more flexible reparametrization
functions. For example, when X is related to handwritten data, ”acceleration” changes must
be taken into account. This can be done by modifying Γ as follows:

Γ̃ = {mod(γ(t)− δ, 1), t ∈ [0, 1], δ ∈ [0, 1] and γ ∈ Γ0} ,

where Γ0 is the space of diffeomorphism functions from [0, 1] → [0, 1]. Hence, this framework
can be seen as an extension of the work of Tucker et al. (2013) for closed random curves.

Figure 3 exhibits the effect of γδ ∈ Γ for different values of δ on a realization x̃ of X̃. We
see the ”rearrangement effect” of the reparametrization function: δ = 0 defines the reference
shape and the starting point of the coordinate functions of x̃ ◦ γδ coincides with the point
t = δ of the reference shape.
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γδ x̃ ◦ γδ (x̃ ◦ γδ)(1) (x̃ ◦ γδ)(2)

δ = 0

δ = 0.5

δ = 0.155

Figure 3: Plots of the functions γδ and of its composition with the shape x̃ for different values
of δ, resulting in different starting points (represented by the red arrows) and coordinate
functions.

In contour datasets, the variation of δ arises from edge detection algorithms, which
select the starting point as the argument of the coordinate functions associated with the
smallest/largest distance from the origin. The issue with this approach is that the starting
value depends on the transformation variables, particularly rotation. Figure 4 illustrates this
effect when the smallest distance from the origin is considered: each row shows the same
shape subjected to different rotations, leading to entirely different coordinate functions.
Therefore, the challenge is to obtain δ jointly with the other transformation variables. We
will elaborate on this point in Section 2.3.

Figure 4: Illustration of the effect of rotation on a given shape and its coordinate functions
when the starting value is defined as the point associated with the lowest values of the
coordinate functions.

In addition to being well-suited for contour data, the space Γ has interesting mathematical
properties, as demonstrated by the following result.

7



Proposition 2.1. (Γ, ◦) is a group and the isometry property ∥f ◦ γδ∥H = ∥f∥H holds for
f ∈ H and γδ ∈ Γ.

With this in mind, the rest of this section presents the process of determining the defor-
mation variables (ρ,Oθ,T, γδ).

2.2 Determination of the deformation variables

Although our ultimate goal is to analyze a sample of planar closed curves—that is, to work
with n realizations of the random function X—the alignment procedure is performed curve
by curve. Specifically, for each curve, the translation and scaling variables can be directly
determined based on the assumptions made about the shape X̃, as will be discussed in
Section 2.2.1. To estimate the rotation and reparametrization variables, we will see in
Section 2.2.2 that it is necessary to define a template, which may depend on other curves
in the sample. However, once the template is established, the alignment procedure can be
applied individually to each curve.

2.2.1 The translation and scaling transformations

To determine the translation and scaling variables, we rely on the definition of the shape
variable X̃ which is centered in (0, 0)⊤ and has a unitary norm. Hence, direct computations
show that the translation vector T and the scaling parameter ρ are

T =

∫ 1

0

X(t)dt and ρ = ||X−T||H.

These variables are particularly useful for analyzing an object’s position within an image :
the parameter T captures lateral displacement, while ρ indicates the object’s proximity to
the camera.

Let X∗ be the variable obtained once the effect of translation and scaling has been
removed from X :

X∗(t) =
1

ρ
(X(t)−T) , t ∈ [0, 1]. (3)

We use this variable to determine Oθ and γδ in the next section.

Remark. By construction, X∗ belongs to the same space as X̃, namely S∞. In statistical
shape analysis, S∞ is called the ”pre-shape space” (Dryden and Mardia (1998), Srivastava
et al. (2010)) and it contains shapes that are possibly deformed by rotation and reparametriza-
tion. The ”shape space”, which could be denoted by S∞/ ∼, represents the quotient space of
S∞ with the equivalence relation ∼ defined as

f ∼ g ⇐⇒ ∃(θ, γ) ∈ [0, 2π]× Γ such that f = Oθg ◦ γ, (4)

where f , g ∈ S∞. In other words, this relation says that f ∼ g if and only if f and g share
the same shape.

8



2.2.2 The rotation and reparametrization transformations

Our strategy to determine the rotation and reparametrization parameters is to align the
function X∗ to a function of reference µ ∈ S∞. As in the case of univariate functions
alignment, there is no ground truth for the choice of µ (Marron et al., 2015). It could be
known a priori or estimated from the data, for example as the standardized mean of the
shape

µ ∝ E(X̃).

In Tucker et al. (2013), the authors propose an iterative-based Karcher’s mean algorithm
to approximate E(X̃) in the univariate case since direct computation of µ is unfeasible (µ
is needed first to get X̃). This could be extended to our case. Another strategy is to
choose µ as one of the realizations of X∗. This strategy has the advantage of being faster
but may inherently suffer from biases and generalization issues. The choice between these
two strategies primarily depends on practical considerations. For the following theoretical
developments, we assume that µ is known. In practice, as illustrated in Sections 4 and 5,
we simply select µ as a standardized version of one of the curves from the sample.

Recall that X = ρOθX̃ ◦ γδ +T, thus X∗ defined in (3) can be written as

X∗(t) = OθX̃ ◦ γδ(t), t ∈ [0, 1]. (5)

Determining the rotation matrix Oθ and the reparametrization function γδ that align X∗ to
µ is equivalent to finding the parameters θ and δ that minimize the distance, measured in
terms of the ∥·∥H norm, between X∗ = OθX̃ ◦ γδ and Oθµ ◦ γδ. This leads to the following
definition of the parameter estimators :

(θ̂, δ̂) = argmin
(θ,δ)∈[0,2π]×[0,1]

∥X∗ −Oθµ ◦ γδ∥2H . (6)

Using the fact that O−1
θ = O⊤

θ , since rotation matrices are orthogonal, and that the inverse
of γδ ∈ Γ is γ1−δ (as shown in the proof of Proposition 2.1), we can estimate the shape
variable X̃, once (θ̂, δ̂) have been obtained, by O⊤

θ̂
X∗ ◦ γ̂1−δ̂.

From the isometry propriety of Γ (Proposition 2.1), it follows that

∥f ◦ γ − g ◦ γ∥H = ∥f − g∥H , for f , g ∈ H and γ ∈ Γ.

As in the univariate case (Tucker et al., 2013), this invariance ensures that our estimators
remain unchanged under an identical reparametrization of X∗ and µ.

Remark. Equation (6) and Proposition 2.1 enable the introduction of the following ”elastic
distance” d : S∞×S∞ → R+, inspired by Younes (1998) and Srivastava and Klassen (2016):

d(f , g) = min
δ∈[0,1],θ∈[0,2π]

∥f ◦ γδ −Oθg∥H .

It is ”elastic” since by construction d(·, ·) is independent of rotation and reparametrization:

d(f , g) = d(Oθ1f ◦ γδ1 ,Oθ2g ◦ γδ2)
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for δ1, δ2 in [0, 1] and θ1, θ2 ∈ [0, 2π]. This means that d(X∗, X̃) = 0. In fact, we can use
d(·, ·) to reformulate the equivalence relation in (4) as follows:

f ∼ g ⇐⇒ d(f , g) = 0,

where f , g ∈ S∞. The equivalence class [f ] of f is

[f ] = {g ∈ H, d(f , g) = 0}.

The set [f ] is also called the ”orbit” of f (Srivastava and Klassen, 2016).

Lemma 2.2. d(·, ·) is a pseudo-distance on H.

Note that d(·, ·) is not a proper distance since separability does not hold, indeed

d(f , g) = 0 ≠⇒ f = g,

but by redefining it on the shape space S∞/ ∼ instead of the pre-shape S∞, it can be made
into one.

2.3 Estimation of deformations using a basis expansion for X

Due to technological limitations, functional variables can only be observed discretely in
practice. In our case, the discretization grid coincides with the image resolution. Therefore,
a crucial first step in FDA is data smoothing, which consists of reconstructing the functional
form of each discretely observed curve. Working with the continuous version of the data
instead of analyzing images at the pixel level is a major advantage of our approach, as it
enables the handling of images with different resolutions.

A common method for data smoothing is to use a basis function system (Ramsey and
Silverman, 2005, Chap. 3). This approach is particularly suitable in our context, as it allows
us to express the deformations estimation problem in a linear matrix formulation, making it
more computationally tractable than working directly in the functional space.

The basis expansion technique assumes that X can be expressed as

X(t) =
M∑
k=0

ckψk(t), t ∈ [0, 1],

where ψ0, . . . , ψM ∈ L2([0, 1]) are known basis functions, and ck ∈ R2 are the corresponding
coefficients. Reconstructing the full function X from discrete observations thus reduces to
estimating the coefficients ck, which can be achieved, for instance, by minimizing a least-
squares criterion.

The choice of basis functions ψk depends on the context. In FDA, B-splines and Fourier
basis functions are among the most commonly used options: B-splines are typically preferred
for non-periodic data, while Fourier basis functions are well suited for periodic data (Ramsey
and Silverman, 2005).

In this work, we focus on Fourier basis functions due to the inherent periodicity of X. A
key benefit of this choice is the well-known ”time shift” property of the Fourier transform,
which, as we will show, greatly simplifies the optimization problem (6).
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First recall that the first M + 1 Fourier basis functions are

ψ0(t) = 1, ψk(t) =

{ √
2 sin((k + 1)πt) if k odd,√
2 cos(kπt) if k even,

(7)

for k = 1, . . . ,M andM even. Since these functions are orthonormal and satisfy
∫ 1

0
ψk(t)dt =

0, k ≥ 1, the translation and scaling parameters can be written as

T =

∫ 1

0

X(t)dt = c0 and ρ = ||X−T||H =

∥∥∥∥∥
M∑
k=1

ckψk

∥∥∥∥∥
H

=

√√√√ M∑
k=1

∥ck∥22, (8)

with ∥ · ∥2 the ℓ2-vector norm. This leads to

X∗(t) =
1

ρ
(X(t)−T) =

M∑
k=1

αkψk(t) = αψ(t),

with αk = ck/ρ ∈ R2, k = 1, . . . ,M , and where α = (α1,α2, . . . ,αM) ∈ R2×M and ψ =
(ψ1, ψ2, . . . , ψM)⊤ ∈ (L2([0, 1]))M .

The next lemma formalizes the ”time shift” property by describing how reparametrization
affects Fourier basis functions.

Lemma 2.3. Let ψ1, . . . , ψM be defined as in (7) and define ψδ = (ψ1 ◦ γδ, . . . , ψM ◦ γδ)⊤,
with γδ ∈ Γ. Then we have

ψ = β(δ)ψδ, (9)

where

β(δ) =


O2πδ 0 . . . 0
0 O4πδ . . . 0
...

... . . .
...

0 0 . . . OMπδ

 ∈ RM×M ,

is a sparse-orthogonal matrix.

This result reduces the reparametrization to a simple linear change of basis functions,
where β(δ) is the transfer matrix. Note that if δ ∈ {0, 1}, the matrix β(δ) corresponds to the
identity matrix, meaning that the reparametrization effect vanishes. The next result builds
on this lemma to reformulate the objective function in (6), allowing it to be expressed in a
matrix form rather than a functional form.

Proposition 2.4. Suppose that the function of reference µ can be expressed as

µ(t) =
M∑
k=1

ukψk(t) = uψ(t),

with u = (u1,u2, . . . ,uM) ∈ R2×M . Then the optimization problem (6) is equivalent to

(θ̂, δ̂) = argmin
(θ,δ)∈[0,2π]×[0,1]

∥αβ(δ)−Oθu∥2F (10)

where ∥·∥F is the Frobenius norm matrix.
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The problem (10) is a variation of the Procrustes problem (Schönemann, 1966). In the
classical formulation, the goal is to determine the angle θ, whereas in our case, we also need
to estimate δ.
To achieve this, we first construct a candidate set S for δ̂. For each δ̂ ∈ S, the corresponding
θ̂ is obtained directly as the Procrustes angle solution. This results in multiple candidate
pairs (δ̂, θ̂), and we select the one yielding the minimal value of the objective function
F(θ, δ) = ∥αβ(δ)−Oθu∥2F .

One strategy for defining S is as follows. First minimize the function F(θ, δ) with respect
to δ, and let S0 denote the set of solutions. Then define S as S0. The set S0 can be computed
in the following way. Direct calculations lead to

F(θ, δ) = ∥α∥2F + ∥u∥2F − 2 cos(θ)
[
α(1)β(δ)(u(1))⊤ +α(2)β(δ)(u(2))⊤

]
+ 2 sin(θ)

[
α(1)β(δ)(u(2))⊤ −α(2)β(δ)(u(1))⊤

]
.

The partial derivatives of F are given by:

∂

∂θ
F(θ, δ) = −2 cos(θ)

[
α(2)β(δ)(u(1))⊤ −α(1)β(δ)(u(2))⊤

]
+ 2 sin(θ)

[
α(1)β(δ)(u(1))⊤ +α(2)β(δ)(u(2))⊤

]
,

∂

∂δ
F(θ, δ) = −2 cos(θ)

[
α(1)G(δ)(u(1))⊤ +α(2)G(δ)(u(2))⊤

]
+ 2 sin(θ)

[
α(1)G(δ)(u(2))⊤ −α(2)G(δ)(u(1))⊤

]
.

Using the fact that the optimums verify

∂

∂δ
F(θ, δ) =

∂

∂θ
F(θ, δ) = 0,

we have that

S0 =

{
δ ∈ [0, 1],

α(2)β(δ)(u(1))⊤ −α(1)β(δ)(u(2))⊤

α(1)β(δ)(u(1))⊤ +α(2)β(δ)(u(2))⊤
=
α(1)G(δ)(u(1))⊤ +α(2)G(δ)(u(2))⊤

α(1)G(δ)(u(2))⊤ −α(2)G(δ)(u(1))⊤

}
,

where G(δ) = ∂
∂δ
β(δ).

However, S0 has no closed-form expression. A possible workaround is to approximate it
by the set of solutions of the following equation:

∥∥∥∥α(2)β(δ)(u(1))⊤ −α(1)β(δ)(u(2))⊤

α(1)β(δ)(u(1))⊤ +α(2)β(δ)(u(2))⊤
− α(1)G(δ)(u(1))⊤ +α(2)G(δ)(u(2))⊤

α(1)G(δ)(u(2))⊤ −α(2)G(δ)(u(1))⊤

∥∥∥∥
2

= 0,

which can be solved numerically. While feasible, this approach has a significant drawback:
any approximation error in S0 may lead to inaccurate estimates of (θ, δ), potentially degrad-
ing the overall alignment accuracy.

Based on some numerical experiments, we propose a much simpler alternative: instead
of computing S0, we define S as a dense grid over [0, 1]. This strategy, which we adopt in
our simulation study, gives good estimates of the parameters δ and θ, as will be discussed in
Section 4.
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3 Modeling X: a joint PCA approach

In the previous section, we introduced tools for estimating the deformation parameters as-
sociated with a planar curve X. This enables us to align a sample of planar closed curves by
removing these deformations curve-by-curve, allowing for a meaningful analysis of variations
in both shape and deformation variables.

In this section, we define a statistical model to capture the full range of variations in X,
a key challenge in many applications dealing with such data. A straightforward approach
might be to use a linear model for X, but this is unsuitable due to the nonlinear nature of
deformations acting on X̃. This is evident when considering the expectation of X :

E(X) = E
(
ρOθ

(
X̃ ◦ γδ

))
+ E (T) .

Here, the deformations are entangled within the term E
(
ρOθ

(
X̃ ◦ γδ

))
, making it difficult

to identify and analyze their individual contributions.
To tackle this problem, and inspired by the phase-amplitude joint modeling in Tucker

et al. (2013), we propose to study the random vector Z = (Z1,Z2)
⊤ of mixed variables:

Z1 = ρX̃ ∈ H and Z⊤
2 =

(
tan(π

2
(δ − 1

2
)) tan(1

4
(1
2
θ − π)) T⊤) ∈ R4.

The variable Z1 ∈ H is a linear transformation of the vector (X̃, ρ) ∈ S∞×R+ preserving
the same information. However, working with Z1 is more convenient, as the space S∞

is inherently restrictive : it does not naturally support meaningful definitions of functional
expectations or covariance operators. Nevertheless, if ρ is considered as a nuisance parameter
and discarded, one can analyze X̃ through a tangent space transformation, providing an
alternative framework for shape analysis (see Dryden and Mardia (1998) and Tucker et al.
(2013) for more details). Similarly, we work with the variable Z2 ∈ R4 instead of (δ, θ,T⊤)⊤ ∈
[0, 1]× [0, 2π]× R2, as Z2 is defined in a more convenient space.

In summary, Z is obtained via the bijective transformation

G1 : H → H× R4,

defined such that G1(X) = Z. Moreover, letting Z⊤
2 = (Z21, Z22, Z23, Z24) we can recover X

from Z using

X = G−1
1 (Z) = O8 tan−1(Z22)+2πZ1 ◦ γ 2

π
tan−1(Z21)+

1
π
(t) + (Z23, Z24)

⊤.

3.1 The underlying linear models

Having properly defined Z, we now aim to model its two components independently using
PCA-based techniques.

Since Z1 is a bivariate functional variable, we use the Multivariate Functional PCA
(MFPCA) approach of Jacques and Preda (2014) which leads to

Z1(t) = E(Z1(t)) +

M1∑
k=1

ξ
(1)
k ϕk(t), t ∈ [0, 1], (11)
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where ϕ1,ϕ2, . . . ,ϕM1
∈ H are the eigenfunctions of the covariance operator of Z1. Similarly,

classical PCA gives the following representation of Z2:

Z2 = E(Z2) +

M2∑
k=1

ξ
(2)
k Uk, (12)

whereU1,U2, . . . ,UM2 ∈ R4 are the eigenvectors of the covariance matrix of Z2. For j = 1, 2,

we have that the scores ξ
(j)
1 , . . . , ξ

(j)
Mj

∈ R are mean-zero random variables such that

E(ξ(j)k ξ
(j)
l ) =

{
λ
(j)
k if k = l,
0 if k ̸= l,

where λ
(j)
k is the k−th eigenvalue of the covariance operator of Zj.

It is worth noting that a global PCA approach could be applied to Z, treating both
components simultaneously. This could be achieved using, for example, techniques designed
for hybrid variables (as developed in Chap.10 of Ramsey and Silverman (2005)). However,
while this approach may simplify the representation, it comes at the cost of interpretability.
Indeed, in this case, the scores for shape and deformation would no longer be separated. As
a result, if a curve exhibits an abnormal score, it would be unclear whether this deviation is
due to shape or deformation variations.

By contrast, our separated PCA approach provides greater transparency by disentan-
gling shape and deformation variations. This interpretability is particularly valuable in
applications such as anomaly detection and classification, where understanding the source
of variations can be important.

3.2 The generative model of X

The scores in (11) and (12) can be modelized using the same techniques as used in the
univariate functional case (Tucker, 2023). For example, a classical approach would be to use
a joint Gaussian model which supposes that the random vector of scores

ξ⊤ = ((ξ(1))⊤, (ξ(2))⊤) = (ξ
(1)
1 , . . . , ξ

(1)
M1
, ξ

(2)
1 , . . . , ξ

(2)
M2

) ∈ RM1+M2

follows a multivariate normal distribution of mean 0 ∈ RM1+M2 and of covariance

Σ =

(
Σ1 Σ1,2

Σ⊤
1,2 Σ2

)
∈ R(M1+M2)×(M1+M2)

where

Σ1,2 = E(ξ(1)(ξ(2))⊤) ∈ R(M1×M2) and Σj =


λ
(j)
1 0 . . . 0

0 λ
(j)
2 . . . 0

... . . .

0 0 . . . λ
(j)
Mj

 ∈ RMj×Mj , j = 1, 2.
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Once a model has been specified for ξ, it is straightforward to define a generative model
for X. Define the operator G2 as the bijective transformation of Z into ξ obtained by the
joint-PCA approach, i.e.,

G2 : H× R4 → RM1+M2

such that G2(Z) = ξ. Then, the generative model of X is

X = G−1
1 (Z) = G−1

1

(
G−1
2 (ξ)

)
. (13)

4 Simulation study

In order to study the performance of the estimation procedure presented in the previous
sections, we consider two main scenarios :

S1 we observe realizations X∗
1, . . . ,X

∗
n of X∗, on a common discrete grid ;

S2 we observe realizations X1, . . . ,Xn of X, on a common discrete grid.

Scenario S1 allows us to focus exclusively on the estimation of the rotation matrix and
the reparametrization function, as they are the core elements of our estimation procedure.
In contrast, scenario S2 represents a more realistic setting by considering all deformation
variables.

4.1 Data simulation

We construct the planar closed curves Xi by setting

Xi(t) = ρiX
∗
i (t) +Ti, where X∗

i (t) = OθiX̃i ◦ γδi(t), t ∈ [0, 1],

with Ti ∼ N((0, 0)⊤, I2), δi ∼ U(0, 1), and θi ≡ 2πδi ∼ U(0, 2π). Inspired by Weisstein
(2003), we define the scaled shape variables ρiX̃i to have a ”heart” shape by setting

ρiX̃i(t) =

(
bi0 sin

3(π(2t− 1))∑4
k=1 bik cos(kπ(2t− 1))

)
, t ∈ [0, 1],

with (bi0, . . . , bi4) ∼ N((16, 13,−5,−2,−1)⊤, σ2I5) and we consider two different values for
σ: 0.01 and 0.1. Note that since by definition we require X̃i ∈ S∞, the parameter ρi is equal
to ∥ρiX̃i∥H.

A standardized version of the mean function f(t) = E(ρiX̃i(t)) is illustrated in the first
row of Figure 5. To illustrate the effect of the parameter σ on the shape variables, the
second and third rows of the figure show n = 5 curves, X̃1, . . . , X̃5, simulated under the
two considered values of σ. Figure 6 shows 3 realizations of X∗ (first three columns) and 3
realizations of X (last three columns), both simulated with σ = 0.1.
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Figure 5: Plot of the function f/ ∥f∥H and of its coordinate functions (first row), plot of

n = 5 realizations of X̃ and of their coordinate functions, simulated with σ = 0.01 (second
row) and σ = 0.1 (third row).

X∗ X

Figure 6: Plot of 3 realizations of X∗ and of their coordinate functions on the left and plot
of 3 realizations of X and of their coordinate functions on the right, obtained under σ = 0.1.

4.2 Numerical results

We simulated four samples of n = 200 curves, each observed on a common grid of 101
equidistant points on [0, 1]. Each sample corresponds to a different combination of scenarios
and values of σ. We then estimated the functional form of each discretely observed curve
using a basis expansion strategy, as described in Section 2.3, with M = 10 Fourier basis.
This number of basis ensures a sufficiently good fit to the data.

The estimated curves of each sample, denoted x̂∗
i , (respectively x̂i), i = 1, . . . , n for

scenario 1 (resp. for scenario 2) are illustrated in the three first columns of Figure 7.

16



We then applied the estimation procedure presented in Section 2, using µ = f/ ∥f∥H
as the function of reference and S = {0.01k}100k=1 as the candidate set for δ̂. The last three
columns of Figure 7 show the estimated shape curves, ˆ̃xi, i = 1, . . . , n, for each sample.
Visually, the results are satisfactory: the shape curves are similar to those depicted in Figure
5 and the coordinate functions are well aligned, meaning that their modes coincide properly.

x̂∗ (x̂∗)(1) (x̂∗)(2) ˆ̃x ˆ̃x(1) ˆ̃x(2)

S1

σ = 0.01

σ = 0.1

x̂ x̂(1) x̂(2) ˆ̃x ˆ̃x(1) ˆ̃x(2)

S2

σ = 0.01

σ = 0.1

Figure 7: Each row corresponds to a sample, the first three columns show the smoothed
curves and their coordinate functions while the three last show the estimations of the shape
curves.

To quantitatively assess the performance of our estimation procedure, we use Mean
Square Error (MSE) metrics. For the translation and scaling parameters, these are defined
as :

MSET =
1

n

n∑
i=1

∥∥∥Ti − T̂i

∥∥∥2

2
and MSEρ =

1

n

n∑
i=1

(ρi − ρ̂i)
2.

To account for the cyclic nature of the rotation and re-paremetrization parameters, i.e., the
fact that values at the boundaries of their respective domain, [0, 2π] and [0, 1], are equivalent,
we define the MSE on a projected version of these parameters as follows:

MSEθ =
1

n

n∑
i=1

∥∥∥∥(cos(θi)sin(θi)

)
−
(
cos(θ̂i)

sin(θ̂i)

)∥∥∥∥2

2

and

MSEδ =
1

n

n∑
i=1

∥∥∥∥(cos(2πδi)sin(2πδi)

)
−
(
cos(2πδ̂i)

sin(2πδ̂i)

)∥∥∥∥2

2

.
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Table 1 summarizes the results, displaying the MSE values for each parameter, scenario,
and value of σ. All values in the table are very small, indicating a high accuracy of the
estimated parameters.

σ MSEδ MSEθ MSET MSEρ

S1
0.01 3.40× 10−4 3.42× 10−4

0.1 3.14× 10−4 3.15× 10−4

S2
0.01 3.39× 10−4 3.41× 10−4 9.98× 10−32 1.80× 10−32

0.1 3.15× 10−4 3.15× 10−4 6.34× 10−32 1.81× 10−32

Table 1: MSE of the estimated parameters for the different scenarios and values of σ

5 Real data analysis

In this section, we analyze datasets from theMPEG-7 database1, which has been widely used
in statistical shape analysis (see, for example, Srivastava et al. (2010), Srivastava and Klassen
(2016), Carlier et al. (2016)). This database contains binarized images of 101 different
objects, each with approximately 20 images. For our study, we focus on five specific objects:
the butterfly, the fork, the bat, the horseshoe, and the spoon. For clarity, we present in this
section only the results for the butterfly and the fork datasets, while the results for the other
three objects are provided in Appendix A. Figure 8 displays five sample images for each of
the two objects under consideration. We see that the images exhibit variations in rotation,
scaling, and translation, resulting in differences in the orientation, size, and positioning of
the butterflies and forks.

Figure 8: Examples of images from the database for the butterfly and fork objects.

Before analyzing the datasets with our approach, we first need to extract planar curves
from the binarized images. To do so, we use the OpenCV library in Python (Bradski, 2000).
For illustration, Figure 9 displays the planar closed curves extracted from the images in Fig-
ure 8. We can observe that the extraction procedure introduces reparametrization variations:
the starting points are generally different across curves, particularly for the forks. It is also
worth noting that the distribution of deformation variables appears to differ between the two
objects. Indeed, for example, almost all butterflies exhibit different orientations, whereas
the forks are almost all aligned in the same direction; this suggests that the distribution

1https://dabi.temple.edu/external/shape/MPEG7/dataset.html
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of the rotation parameter varies across objects. In a general context, this means that the
deformations applied to a shape may depend on the shape itself.

Figure 9: Planar closed curves extracted from the binarized images of Figure 8 (first row of
each block) with their associate first and second coordinate functions (second row of each
block).

5.1 Results from the alignment procedure

Before aligning the planar curves – that is, estimating the deformation parameters – we first
recover their functional form using a basis expansion with M = 50 Fourier functions. Let
x̂s
1, . . . , x̂

s
ns

denote the resulting functions, where the index s refers to the dataset: s = b for
butterflies and s = f for forks. We then estimate the translation and scaling parameters for
each curve, yielding the standardized shapes x̂∗s

i , i = 1, . . . , ns. These standardized shapes
are illustrated in Figure 10.

To estimate the rotation and the reparametrization parameters, we use the first estimated
standardized shape associate to each dataset as the function of reference, setting µs = x̂∗s

1 .
We then define the candidate set for δ̂ as S = {0.01k}100k=1. This procedure results in the
estimated shape curves ˆ̃xs

i , i = 1, . . . , ns which are illustrated in Figure 10. The coordinate
functions are visually well aligned, indicating that the alignment procedure performs well.

The estimated deformation parameters for each curve in both datasets are shown in Fig-
ure 11. We observe differences in the distribution of these parameters across the two datasets.
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For example, in the butterfly dataset, the second translation coordinate T̂
(2)
i appears to be

linearly related to the first coordinate T̂
(1)
i , whereas in the fork dataset, the translation vec-

tors are mainly clustered around a centroid. Moreover, the estimated rotation parameters θ̂i
exhibit greater variability in the butterfly dataset compared to the fork dataset, and this re-
mark also holds for the reparametrization parameters. These observations confirm our visual
assessment in Figure 9: the distributions of deformation variables are shape-dependent and
should be accounted for in the generative model of the planar curves X, as we will discuss
in the next section.

µb

x̂∗b

ˆ̃xb

µf

x̂∗f

ˆ̃xf

Figure 10: Illustration of the estimates of the standardized shapes (first row) and of the
shapes (second) obtained from applying our alignment procedure to the butterfly (first block)
and fork (second block) datasets.
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T̂i ρ̂i θ̂i 2πδ̂i

Butterfly

Fork

Figure 11: Plots of the estimated deformation parameters of each curve in both datasets

5.2 Results from modeling X

We now apply the joint PCA methodology presented in Section 3.1 to both datasets. For
each curve xi in each dataset, we construct the vector

zi = G1(ρ̂iOθ̂i
ˆ̃xi ◦ γδ̂i + T̂i) = (zi1, zi2)

⊤,

where
zi1 = ρ̂i ˆ̃xi and z⊤i2 =

(
tan(π

2
(δ̂i − 1

2
)) tan(1

4
(1
2
θ̂i − π)) T̂⊤

i

)⊤
.

We then analyze the zi1 with a MFPCA approach and the zi2 with a classical PCA approach.
The first row of Figure 12 illustrates the estimated mean shape (in black) of the butterfly

dataset, along with the effect of adding (in red) or subtracting (in blue) a multiple of the
first three eigenfunctions resulting from the MFPCA. The last row presents the same curves
for the fork dataset. This type of graph, inspired by (Ramsey and Silverman, 2005, Chap.
8), allows us to understand the sources of variability captured by the eigenfunctions.

For the butterfly dataset, the primary sources of variation are located in the antennae and
wings. More specifically, the first eigenfunction captures variation in wing size proportional
to body length, which represents the most significant source of variation among the butterflies
in the dataset. The second and third eigenfunctions appear to capture variations in wing
shape. This is particularly noticeable for the third eigenfunction, where a large value of the
associated score leads to pointy wings, as shown in red.

For the fork dataset, the first eigenfunction captures a major source of variation: the
fact that some forks have only three prongs instead of four, as seen in blue. The second
eigenfunction captures variations in the overall fork shape, allowing for either elongated or
bulkier forks, while the third eigenfunction captures variability in the handle shape.

Note that the first three eigenfunctions account for 65% of the total variance in the fork
dataset, compared to 88% in the butterfly dataset, suggesting that the butterfly shapes have
more dominant modes of variation compared to the forks.
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PC1 (57%) PC2 (22%) PC3 (9%)

PC1 (28%) PC2 (24%) PC3 (13% )

Figure 12: Plots of the estimated mean function z̄ =
∑

i zi1 in black, of z̄−20ϕ̂k in blue and

of z̄+20ϕ̂k in red, for k = 1 (first column), k = 2 (second column) and k = 3 (third column).
The first row corresponds to the butterfly dataset, while the second row corresponds to the
fork dataset. The number in parentheses in each plot title indicates the percentage of total
variation explained by the corresponding eigenfunction.

To evaluate the ability of our joint PCA approach to model planar curves, we use the
estimated model to generate new samples. The underlying idea is that a well-fitted model
should produce realistic synthetic shapes that resemble those in the original datasets.

We define our generative model as presented in Section 3.2. Specifically, we simulate
the score vectors ξ ∈ RM1×M2 from the joint Gaussian model estimated from the data.
Moreover, the number of retained principal components, M1 associated with Z1 and M2

associated with Z2, is chosen such that the cumulative variance explained by the first M1

eigenfunctions (resp. M2 eigenvectors) reaches at least 90%. This results in setting M1 = 4
and M2 = 4 for the butterfly dataset and M1 = 7 and M2 = 4 for the fork dataset.

For comparison, we also generate new samples using an alternative approach: we use the
estimated model obtained from applying the MFPCA method of Happ and Greven (2018)
directly on the smoothed curves x̂s

i , i = 1, . . . , ns and s = b, f . As before, we retain a
number of principal components, denoted M3, such that the cumulative variance explained
by the firstM3 components is at least of 90%. This leads toM3 = 3 for the butterfly dataset
and M3 = 4 for the fork dataset. Note that this alternative approach does not explicitly
model the deformation parameters, which may limit its ability to generate realistic curves.

Figures 13 and 14 illustrate examples of generated butterfly and fork curves, respectively.
Each figure consists of three rows presenting five curves : row (a) shows curves generated with
our approach without deformations, row (b) displays curves generated using our approach
and with deformations, and row (c) presents curves generated with the MFPCA approach.

To assess numerically how well the generated curves resemble those in the original
datasets, we introduce two similarity metrics based on the distance d defined in Section
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2.2.2:

D1(y
s) =

1

ns

ns∑
i=1

d (y∗s, x̂∗s
i ) and D2(y

s) = min
1≤i≤ns

d (y∗s, x̂∗s
i ) ,

where ys is a generated planar curve and y∗s is its standardized shape with s = b, f .
A low value of D1(y

s) indicates that the generated curve is on average close to the
dataset’s shapes, while a low value of D2(y

s) indicates that at least one shape from the
original dataset is similar to the generated one. The values of these two metrics for each
generated curve are indicated at the top of each plot in Figures 13 and 14 .

Overall, our method produces more realistic shapes compared to the MFPCA approach.
This is particularly evident in Figure 13, where the curves generated by our model (row (b))
closely resemble real butterfly silhouettes, whereas those from MFPCA (row (c)) tend to
produce generic closed curves with little resemblance to actual butterflies.

D1: 0.05 0.05 0.15 0.06 0.06
D2: 0.02 0.01 0.04 0.02 0.02

(a)

D1: 0.06 0.05 0.16 0.06 0.07
D2: 0.04 0.01 0.09 0.02 0.04

(b)

D1: 0.06 0.06 0.06 0.07 0.12
D2: 0.02 0.02 0.02 0.03 0.08

(c)

Figure 13: Butterfly curves generated with (a) our approach without the deformation pa-
rameters, (b) our approach with the deformation parameters, and (c) with MFPCA.

23



D1: 0.14 0.13 0.18 0.22 0.22
D2: 0.05 0.06 0.04 0.05 0.05

(a)

D1: 0.17 0.13 0.18 0.22 0.21
D2: 0.11 0.06 0.04 0.06 0.1

(b)

D1: 0.33 0.16 0.31 0.33 0.28
D2: 0.27 0.11 0.17 0.23 0.17

(c)

Figure 14: Fork curves generated with (a) our approach without the deformation parameters,
(b) our approach with the deformation parameters, and (c) with MFPCA

6 Discussion

This paper addressed the study of random planar curves, with a particular focus on the
contours of main silhouettes in images. The first part of our work deals with alignment, i.e.,
estimating the shape variable associated with a planar curve. To achieve this, we propose
a suitable framework for determining the deformation variables. Once all the components
of the planar curves are obtained, the second part introduces a novel model, inspired by
functional data analysis, to account for their dependencies.

In the alignment step, since scaling and translation parameters can be easily obtained,
our main focus was on estimating reparametrization and rotation deformations. We tackled
this by defining an appropriate space for reparametrization functions and showing that the
estimation problem then reduces to solving a Procrustes-like problem.

The model for random planar curves, introduced in the second part, is based on a joint
principal component analysis. Specifically, it relies on the PCA of the ”aligned” functional
variable (the shape variable times the scaling factor) and the PCA of the remaining pa-
rameters of the planar curve (translation, rotation angle, and reparametrization function),
mapped to a suitable multivariate representation.

A simulation study demonstrates the effectiveness of our framework in estimating the
deformation variables under reasonable signal-to-noise ratios, as the obtained MSEs for the
estimated parameters are close to zero. This is also confirmed by the real data application,
where the estimated shape curves have similar coordinate functions. Moreover, the results
from the real data analysis show that the generated shapes are more realistic compared to
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those obtained with the classical MFPCA. This highlights the importance of aligning the
planar curves before analyzing them.

A key aspect of our approach is the inclusion of deformation variables in the analysis,
particularly the scaling parameter. This choice ensures that the functional space under study
is linear, as it coincides with the space of closed curves. If the scaling parameter is considered
as a nuisance parameter, the analysis has to be conducted on the unit sphere S∞, where the
shape variable resides. Since S∞ is a non-linear manifold, adapting our framework to this
setting would require investigating common techniques in shape analysis, such as performing
principal component analysis on the tangent space of S∞ (Dryden and Mardia (1998), Dai
and Müller (2018)). Moreover, it is worth noting that alternative models for the rotation
angle and starting point could be explored, by using their projection onto the unit circle, as
they are circular variables (Mardia and Jupp, 2009).

Our work also presents some limitations. First, it focuses on the contour of the main
object in an image, which may be restrictive in cases where multiple objects of interest are
present in the same image. A possible extension would be to develop models for multiple
planar curves. Additionally, the space of reparametrization functions considered in this
paper accounts only for variations due to different starting points. While this assumption is
reasonable for image contours, it may not hold in other settings where velocity changes occur.
In such cases, an arc-length parametrization could be an interesting alternative, reducing all
variations to the case we consider. Future work should explore this direction further.
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A Additional figures

This section presents the results obtained from the analysis of the bat, horseshoe, and spoon
datasets mentioned in Section 5. We applied the same procedure as for the butterfly and
fork datasets, as described in Sections 5.1 and 5.2.

The results from the alignment procedure are illustrated in Figure 15. We observe that
the obtained shapes and their corresponding coordinate functions are visually close to the
function of reference µ. The case of the spoon dataset is particularly interesting: the bowl
of the spoons is not always in the same position. This highlights an identifiability issue for
certain shapes. However, their coordinate functions remain visually well-aligned.

The results related to the modeling of X are shown in Figures 16, 17 and 18. Compared
to the principal concurrent model (MFPCA), our proposed method generally produces more
realistic shapes, especially for the bat and horseshoe datasets.
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µ

x̂∗

ˆ̃x

µ

x̂∗

ˆ̃x

µ

x̂∗

ˆ̃x

Figure 15: Illustration of the estimates of the standardized shapes (first row) and of the
shapes (second) obtained from applying our alignment procedure to the bat (first block),
horseshoe (second block) and spoon (third block) datasets.
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D1: 0.05 0.17 0.03 0.09 0.04
D2: 0.02 0.06 0.01 0.02 0.01

(a)

D1: 0.06 0.17 0.03 0.09 0.04
D2: 0.02 0.06 0.01 0.02 0.01

(b)

D1: 0.13 0.05 0.09 0.10 0.07
D2: 0.1 0.03 0.05 0.07 0.04

(c)

Figure 16: Bat curves generated with (a) our approach without the deformation parameters,
(b) our approach with the deformation parameters, and (c) with MFPCA.

D1: 0.04 0.06 0.05 0.04 0.03
D2: 0.01 0.01 0.01 0.01 0.01

(a)

D1: 0.05 0.06 0.05 0.08 0.07
D2: 0.02 0.01 0.02 0.03 0.04

(b)

D1: 0.05 0.15 0.04 0.05 0.06
D2: 0.03 0.12 0.02 0.03 0.03

(c)

Figure 17: Horseshoe curves generated with (a) our approach without the deformation pa-
rameters, (b) our approach with the deformation parameters, and (c) with MFPCA.
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D1: 0.09 0.05 0.04 0.04 0.06
D2: 0.03 0.02 0.01 0.01 0.02

(a)

D1: 0.10 0.05 0.05 0.04 0.07
D2: 0.05 0.02 0.01 0.01 0.04

(b)

D1: 0.18 0.04 0.05 0.05 0.05
D2: 0.09 0.02 0.03 0.03 0.03

(c)

Figure 18: Spoon curves generated with (a) our approach without the deformation parame-
ters, (b) our approach with the deformation parameters, and (c) with MFPCA.

B Proofs of the formal results

Proof of Proposition (2.1). The proposition is composed of two parts: (i) (Γ, ◦) is a group,
and (ii) the isometry propriety holds.

Proof of (i): First recall that for r ∈ R, we have that mod(r, 1) = r − ⌊r⌋ ≡ {r}, i.e., that
{r} is the fractional part of r. We use the following properties of the fractional part in the
proof: (a) {{r}} = {r}, (b) {{r1} + r2} = {r1 + r2}, (c) {r + 1} = {r} for r, r1, r2 ∈ R, (d)
{r} = r − 1 for 1 ≤ r < 2 and (e) {r} = r + 1 for −1 ≤ r < 0.

The group structure is a consequence of the following lemma.

Lemma B.1. Let γδ1 , γδ2 ∈ Γ, then

γδ1 ◦ γδ2 = γδ̃ ∈ Γ, (14)

with δ̃ = mod(δ1 + δ2, 1).

Proof. First note that by definition γ0 = mod(t, 1) = mod(t− 1, 1) = γ1.

• Case where δ1 ∈ {0, 1} and/or δ2 ∈ {0, 1}. If δ1 = 0 and δ2 ∈ [0, 1], then for any
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t ∈ [0, 1], we have

γδ1 ◦ γδ2(t) = γ0 ◦ γδ2(t) = mod(γδ2(t), 1) = mod(mod(t− δ2, 1), 1)

= mod(t− δ2, 1)

=

{
γδ2 if δ2 < 1
γ0 if δ2 = 1

= γmod(0+δ2,1).

All the other cases are shown with a similar argument.

• Case where δ1 ∈ (0, 1) and δ2 ∈ (0, 1). For any t ∈ [0, 1] we have

γδ2(t) =

{
1 + (t− δ2) if t− δ2 < 0,
(t− δ2) if t− δ2 ≥ 0,

which leads to

γδ1 ◦ γδ2(t) = mod(γδ2(t)− δ1, 1)

=

{
mod(1 + (t− δ2)− δ1, 1) if t− δ2 < 0
mod((t− δ2)− δ1, 1) if t− δ2 ≥ 0

= mod(t− (δ2 + δ1), 1)

= mod(t− δ̃, 1).

The last equality comes from the fact that

δ1 + δ2 =

{
δ̃ if δ1 + δ2 < 1

δ̃ + 1 if δ1 + δ2 ≥ 1
, and mod(t− δ̃, 1) = mod(t− (δ̃ + 1), 1).

Since by definition δ̃ ∈ [0, 1), we finally have that γδ1 ◦ γδ2(t) = mod(t− δ̃, 1) = γδ̃(t),
with γδ̃ ∈ Γ.

The proof that (Γ, ◦) is a group follows directly from Lemma B.1 :

• Associativity: Let γδ1 , γδ2 , γδ3 ∈ Γ, then we have

(γδ1 ◦ γδ2) ◦ γδ3 = γmod(δ1+δ2,1) ◦ γδ3
= γmod(mod(δ1+δ2,1)+δ3,1)

= γmod(δ1+mod(δ2+δ3,1),1)

= γδ1 ◦ (γδ2 ◦ γδ3),
where we used property (b) of fractional parts to obtain the third equality.

• Identity element: The function γ0 ∈ Γ is the identity element since for any γδ ∈ Γ,
we have

γδ ◦ γ0 = γ0 ◦ γδ = γmod(δ+0,1) = γδ.

• Inverse element: Let γδ ∈ Γ then γ1−δ ∈ Γ is the inverse of γδ since

γδ ◦ γ1−δ = γmod(δ+(1−δ),1) = γ0 and γ1−δ ◦ γδ = γmod(1−δ)+δ,1) = γ0.

This concludes the proof of (i).

30



Proof of (ii): Let f = (f (1), f (2))⊤ ∈ H and γδ ∈ Γ, we have that

∥f ◦ γδ∥22 =
∫ 1

0

(f (1) ◦ γδ(t))2dt+
∫ 1

0

(f (2) ◦ γδ(t))2dt,

where for j ∈ {1, 2} and t ∈ (0, 1), we have

f (j) ◦ γδ(t) =
{
f (j)(1 + t− δ) if t− δ < 0,
f (j)(t− δ) if t− δ ≥ 0.

Then ∫ 1

0

(
f (j) ◦ γδ(t)

)2
dt =

∫ δ

0

(
f (j)(1 + t− δ)

)2
dt+

∫ 1

δ

(
f (j)(t− δ)

)2
dt

=

∫ 1

1−δ

(
f (j)(u)

)2
du+

∫ 1−δ

0

(
f (j)(u)

)2
du

=

∫ 1

0

(
f (j)(u)

)2
du,

which leads to

∥f ◦ γδ∥22 =
∫ 1

0

(
f (1)(u)

)2
du+

∫ 1

0

(
f (2)(u)

)2
du = ∥f∥22 .

Proof of Lemma 2.2. Let f , g ∈ H.

• Positivity: We have by definition

d(f , g) = min
δ∈[0,1],θ∈[0,2π]

∥f ◦ γδ −Oθg∥H ≥ 0,

and
d(f ,f) = min

δ∈[0,1],θ∈[0,2π]
∥f ◦ γδ −Oθf∥H = ∥f ◦ γ0 −O0f∥H = 0.

• Symmetry: First note that

d(f , g) = min
δ∈[0,1],θ∈[0,2π]

∥f ◦ γδ −Oθg∥H = min
δ∈[0,1),θ∈[0,2π]

∥O2π−θf − g ◦ γ1−δ∥H .

Letting θ′ = 2π − θ and δ′ = 1− δ, we have that

d(f , g) = min
δ′∈[0,1],θ′∈[0,2π]

∥Oθ′f − g ◦ γδ′∥H = d(g,f).

• Triangle inequality:

Since ∥·∥H induce a proper distance, we have that

∥f 1 − f 2∥H + ∥f 2 − f 3∥H ≥ ∥f 1 − f 3∥H
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for f 1,f 2,f 3 ∈ H.

For any f , r, g ∈ H, by letting f 1 = f ◦ γδ,f 2 = Oθr and f 3 = Oθ′g ◦ γδ′ in the
previous inequality, we obtain

∥f ◦ γδ −Oθr∥H + ∥Oθr −Oθ′g ◦ γδ′∥H ≥ ∥f ◦ γδ −Oθ′g ◦ γδ′∥H
⇒ min

δ,δ′∈[0,1], θ,θ′∈[0,2π]
(∥f ◦ γδ −Oθr∥H + ∥Oθr −Oθ′g ◦ γδ′∥H) (15)

≥ min
δ,δ′∈[0,1], θ,θ′∈[0,2π]

∥f ◦ γδ −Oθ′g ◦ γδ′∥H .

The left-hand side of the inequality (15) admits the following simplification

min
δ,δ′∈[0,1], θ,θ′∈[0,2π]

(∥f ◦ γδ −Oθr∥H + ∥Oθr −Oθ′g ◦ γδ′∥H)

= min
δ,δ′∈[0,1], θ,θ′∈[0,2π]

(∥f ◦ γδ −Oθr∥H + ∥r −Oθ′−θg ◦ γδ′∥H)

= min
δ∈[0,1], θ∈[0,2π]

(∥f ◦ γδ −Oθr∥H) + min
δ′∈[0,1], θ⋆∈[0,2π]

(∥r −Oθ⋆g ◦ γδ′∥H) ,

where
min

δ∈[0,1], θ∈[0,2π]
∥f ◦ γδ −Oθr∥H = d(f , r),

and

min
δ′∈[0,1],θ⋆∈[0,2π]

∥r −Oθ⋆g ◦ γδ′∥H = min
δ′∈[0,1],θ⋆∈[0,2π]

∥r ◦ γ1−δ′ −Oθ⋆g∥H = d(r, g).

Using a similar reasoning, we can show that the right-hand side of (15) is equal to
d(f , g), and thus that d(f , r) + d(r, g) ≥ d(f , g).

Proof of Lemma (2.3). Due to the block structure of the matrix β(δ), the lemma follows
directly from the fact that(

sin(2mπγδ(t))
cos(2mπγδ(t))

)
= O−2mπδ

(
sin(2mπt)
cos(2mπt)

)
, (16)

for m ∈ N∗ and γδ ∈ Γ, which we prove below.
First note that for t ∈ [0, 1],

sin(2mπγδ(t)) =

{
sin(2mπ(t− δ)) t ≤ δ

sin(2mπ((t− δ)− 1)) t > δ,

where sin(2mπ((t− δ)− 1)) = sin(2π(t− δ)− 2mπ) = sin(2π(t− δ)). Hence

sin(2mπγδ(t)) = sin(2mπ(t− δ)).

The same reasoning shows that

cos(2mπγδ(t)) = cos(2mπ(t− δ)).
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Finally, (
sin(2mπγδ(t))
cos(2mπγδ(t))

)
=

(
sin(2mπt− 2mπδ)
cos(2mπt− 2mπδ)

)
= O−2mπδ

(
sin(2mπt)
cos(2mπt)

)
,

which concludes the proof.

Proof of Proposition (2.4). Let f θ,δ = X∗ − Oθµ ◦ γδ, this function admits the following
representation

f θ,δ =

(
ψ⊤ 0

0 ψ⊤

)
α⃗θ,δ,

with

α⃗θ,δ = Vec
(
(αβ(δ)−Oθu)

⊤
)
,

and where Vec(·) is the vectorization operator. Hence the norm of f θ,δ is given by

||f θ,δ||2H =

∫ 1

0

f⊤
θ,δ(t)f θ,δ(t)dt

= α⃗⊤
θ,δ

[∫ 1

0

(
ψ(t) 0
0 ψ(t)

)(
ψ⊤(t) 0

0 ψ⊤(t)

)
dt

]
︸ ︷︷ ︸

I

α⃗θ,δ

= α⃗⊤
θ,δα⃗θ,δ

= ∥α⃗θ,δ∥22
=

∥∥∥Vec((αβ(δ)−Oθu)
⊤
)∥∥∥2

2

= ∥αβ(δ)−Oθu∥2F ,

which concludes the proof.
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